2 resultados para 13200-058

em Research Open Access Repository of the University of East London.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article1 I introduce and discuss some of the ways situated intersectional analysis can help to describe – and even explain – different kinds of social, economic, political and personal inequalities. As I have been working on intersectionality for many years – both before and after the issues discussed under this term were to be so labelled, I shall focus primarily on my own version rather than conduct a review of the literature. The paper starts by discussing the ways sociological studies traditionally describe inequality focusing on issues of class. It then introduces intersectionality as a theoretical framework that can encompass different kinds of inequalities, simultaneously (ontologically), but enmeshed (concretely). The latter part of the article examines the ways different kinds of systemic domains provide multiple grounds for the production and reproduction of these inequalities. (1An earlier version of this paper was presented at an ISA plenary in Yokohama, Summer 2014.)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Loess is the most important collapsible soil; possibly the only engineering soil in which real collapse occurs. A real collapse involves a diminution in volume - it would be an open metastable packing being reduced to a more closely packed, more stable structure. Metastability is at the heart of the collapsible soils problem. To envisage and to model the collapse process in a metastable medium, knowledge is required about the nature and shape of the particles, the types of packings they assume (real and ideal), and the nature of the collapse process - a packing transition upon a change to the effective stress in a media of double porosity. Particle packing science has made little progress in geoscience discipline - since the initial packing paradigms set by Graton and Fraser (1935) - nevertheless is relatively well-established in the soft matter physics discipline. The collapse process can be represented by mathematical modelling of packing – including the Monte Carlo simulations - but relating representation to process remains difficult. This paper revisits the problem of sudden packing transition from a micro-physico-mechanical viewpoint (i.e. collapse imetan terms of structure-based effective stress). This cross-disciplinary approach helps in generalization on collapsible soils to be made that suggests loess is the only truly collapsible soil, because it is only loess which is so totally influenced by the packing essence of the formation process.