2 resultados para tubos de concreto
em RICABIB: Repositorio Institucional del Centro Atomico Bariloche e Instituto Balseiro - Argentina
Resumo:
Dado el impacto negativo asociado a la ocurrencia de fallas en tubos de generadores de vapor (TGVs) en centrales nucleares, el estudio de la integridad estructural de éstos ha comenzado a recibir mayor atención recientemente. Diversas metodologías basadas en análisis de carga límite han sido propuestas para asegurar la integridad estructural de los tubos, según los requerimientos establecidos por las autoridades regulatorias. Éstas han conducido, sin embargo, a la definición de criterios de reparación o taponado de TGVs excesivamente conservativos. Por lo tanto, con el objetivo de reducir la cantidad de tubos innecesariamente removidos de servicio, nuevos criterios de evaluación de integridad han sido propuestos recientemente en la literatura. En este contexto, la mecánica de fractura elastoplástica se presenta como una alternativa para la evaluación de la integridad de TGVs, requiriéndose dos elementos para su aplicación: la estimación de la fuerza impulsora en términos del parámetro elastoplástico (por ejemplo, la integral J) y la medición experimental de la tenacidad a la fractura del material de los tubos (por ejemplo, a través de la curva de resistencia J-R). Este trabajo presenta el desarrollo de técnicas experimentales no normalizadas para la determinación de curvas J-R para TGVs con fisuras pasantes circunferenciales y longitudinales. Debido a las dimensiones reducidas de los TGVs, diferentes probetas no normalizadas fueron propuestas. Además, en los ensayos se utilizaron condiciones de carga de tracción y flexión con el objetivo de modelar más adecuadamente los estados tensionales y las condiciones de constraint reales en TGVs. Los valores de la integral J fueron estimados utilizando el método del factor η. La aptitud del método fue evaluada a partir de simulaciones numéricas de los ensayos propuestos mediante análisis elastoplásticos con la técnica de elementos finitos. Se encontró que condiciones de mayor constraint asociadas con fisuras profundas y cargas de flexión favorecen la validez del método del factor η, mientras que configuraciones de menor constraint dan como resultado factores η que exhiben una mayor dependencia con el nivel de carga aplicada. También se observó que los factores η basados en la apertura de la boca de la fisura (Crack Mouth Opening Displacement o CMOD) presentan una dependencia mucho menor con el nivel de carga respecto a los factores η definidos a partir del desplazamiento del punto de aplicación de la carga (Load Line Displacement o LLD). Se presentan los valores del factor η para las probetas estudiadas con fisuras profundas (a/W ≥ 0,40). Se realizaron ensayos de fractura a temperatura ambiente y 300 °C con probetas obtenidas de TGVs nucleares fabricados a partir de las aleaciones 690 (Ni: 61; Cr: 29; Fe: 8,95, % en peso) y 800 (Ni: 33; Cr: 21,6; Fe: 42,2, % en peso). Durante los ensayos de fractura a temperatura ambiente, la extensión estable de fisura fue medida mediante una técnica óptica utilizando un microscopio digital. Para estos ensayos también se aplicó el método de normalización que propone la norma ASTM E1820-15 en el Anexo 15, encontrándose una buena coincidencia entre las longitudes estimadas por éste y las medidas ópticamente. De esta manera, el método de normalización fue utilizado para los ensayos a alta temperatura. Los resultados experimentales mostraron que ambos materiales tienen elevadas tenacidades a la fractura, siendo la aleación 800 la que presentó curvas J-R más elevadas que la aleación 690 tanto para fisuras circunferenciales como longitudinales. Las curvas J-R para ambas aleaciones mostraron un efecto marcado con la orientación de la fisura, es decir que existe una importante anisotropía en las propiedades de fractura: las fisuras circunferenciales presentaron curvas J-R más elevadas que las fisuras longitudinales. El nivel de constraint desarrollado en los ensayos, dado por las condiciones de carga de tracción y flexión, evidenció poco efecto sobre las curvas J-R para probetas con fisuras profundas (a/W ~ 0,50). A su vez, la temperatura de ensayo (temperatura ambiente y 300 °C) presentó un efecto prácticamente nulo para ambas aleaciones. Usando las propiedades de fractura obtenidas en este trabajo, la metodología FAD (Failure Assessment Diagram) fue propuesta y utilizada para la predicción de las condiciones de falla de TGVs fisurados para diferentes geometrías de fisura y condiciones de carga. La comparación entre análisis teóricos y datos experimentales muestra la potencialidad del FAD como una metodología capaz de predecir adecuadamente las fallas de estos componentes.
Resumo:
Los Generadores de vapor (GVs) en una central nuclear están conformados por un manojo de tubos que actúan como una barrera entre el sistema primario contaminado y el secundario. A través de los tubos de GVs (TGVs) se desarrolla el intercambio de calor que produce el vapor que después accionará las turbinas de la central. Estos componentes están sometidos a unas condiciones térmicas, químicas y mecánicas bastante severas, que pueden provocar la aparición de defectos geométricos y volumétricos comprometiendo su integridad estructural. Es por esta razón que el mantenimiento de los GVs es importante para la operación económica y segura de las centrales nucleares. Uno de los principales mecanismos de desgaste de los tubos de GVs es el fenómeno conocido como fretting. El mismo provoca el adelgazamiento de las paredes de los TGVs debido a pequeños movimientos relativos entre superficies en contacto. Dado el caso particular de los GVs del reactor CAREM-25 en los que el circuito primario se encuentra del lado externo de los tubos que lo constituyen, la ocurrencia de este mecanismo de daño podría comprometer la integridad de los mismos haciéndolos más susceptibles al daño por colapso. El presente trabajo constituye una continuación del Proyecto integrador finalizado en el 2015 por Pablo Lazo en el que se evaluó la influencia de efectos de ovalización en el colapso de los tubos de los GVs. Se evalúa ahora la influencia de defectos volumétricos debido a fretting. Esto se realizó a través de modelos numéricos que estiman la presión de colapso en los tubos con y sin defecto. Los resultados de los modelos se compararon con resultados de expresiones analíticas obtenidas por otros autores, valores experimentales propios y otros valores de referencia. A partir del análisis de los resultados se derivaron algunas conclusiones que ayudan a entender el comportamiento de los tubos de GVs con defectos debido a mecanismo de daño por fretting. Además se desarrollaron expresiones matemáticas que ayudan a definir las dimensiones de los defectos que comprometen la integridad estructural de los TGVs en el caso del reactor CAREM-25.