6 resultados para Ingeniería de reactores
em RICABIB: Repositorio Institucional del Centro Atomico Bariloche e Instituto Balseiro - Argentina
Resumo:
El reactor multipropósito RA-10 que se construirá en Ezeiza tiene como objetivo principal aumentar la producción de radioisótopos destinados al diagnóstico de enfermedades; adicionalmente el proyecto RA-10 permitirá ofrecer al sistema científico-tecnológico oportunidades de investigación, desarrollo y producción. Entre ellas se contará con una facilidad de dopaje de silicio a través de transmutación neutrónica para producir material semiconductor. La principal ventaja de esta técnica de fabricación es que se obtiene el semiconductor más homogéneamente dopado del mercado. Esto se logra irradiando a la pieza con un flujo neutrónico axialmente uniforme. La uniformidad axial se obtiene diseñando un aplanador de flujo que consiste en un conjunto de anillos de acero de diferentes espesores para lograr aplanar el perfil de flujo neutrónico que irradia al silicio. El objetivo de este trabajo es diseñar e implementar un algoritmo que permita calcular los espesores óptimos de acero de forma tal de modificar el perfil de flujo neutrónico que se genera en el núcleo para uniformizarlo lo más posible. Se proponen y evalúan mejoras para incrementar el valor del flujo neutrónico al cual se uniformiza. Posteriormente se evalúan los tiempos necesarios para obtener diferentes resistividades objetivo y se realizan cálculos de activación neutrónica para determinar los tiempos de decaimiento necesarios para cumplir los límites de actividad requeridos. Se realizan además cálculos de calentamiento para determinar la potencia que se debe disipar para refrigerar la facilidad.
Resumo:
La línea de cálculo de INVAP consiste principalmente de los códigos CONDOR y CITVAP. Este último es la versión mejorada del código CITATION II que resuelve la ecuación de difusión neutrónica multigrupo por el método de diferencias finitas. CITVAP es ampliamente usado para estudiar reactores de investigación y reactores de potencia tales como PWR, BWR, VVER y últimamente se implemento nuevas funciones para estudiar una central PHWR tipo Atucha. Siguiendo con la línea de reactores PHWR, en este trabajo se estudian las capacidades y deficiencias del código de núcleo CITVAP para modelar una central nuclear tipo CANDU. Se plantean mejoras a realizar para un manejo mas eficiente desde el punto de vista del usuario, tanto de la gestión de combustibles, movimientos de barras de control y zonas líquidas como mejoras en el modelo termohidraulico. La metodología consiste en validar la línea de cálculo de INVAP, contrastando los resultados con el benchmark IAEA-tecdoc-887. El proceso de validación consiste en cálculos de celda en dos y tres dimensiones usando los códigos CONDOR y SERPENT respectivamente, obtención de secciones eficaces macroscópicas en función del quemado y cálculos de núcleo para distintas configuraciones de los dispositivos de control usando un núcleo fresco y una distribución de quemado en equilibrio. Se analizan las dificultades que se presentan al modelar el núcleo con las capacidades actuales del código y se plantean posibles soluciones a implementar. Para un estudio completo de un reactor CANDU, se estudian tres de la características distintivas de este tipo de reactor: la termohidraulica, la gestión de combustibles y los dispositivos de control de reactividad, distribución de potencia y apagado.
Resumo:
En este trabajo se diseñó un condensador de vapor sobrecalentado (320°C@2bar) de 78KW que formará parte de un arreglo experimental en el cual se probarán maniobras de arranque del reactor CAREM. Con este objetivo se hizo un estudio de las distintas tecnologías de condensadores existentes en el mercado y se seleccionó el más apropiado para este proyecto. Se encontró que el formato carcasa-tubo de orientación horizontal era el más apropiado. Se efectuó un dimensionamiento termohidráulico del mismo y se realizó posteriormente un diseño mecánico para satisfacer los requerimientos siguiendo las normas TEMA y ASME. Se efectuó el armado de un circuito termohidráulico, empleando un intercambiador carcasa y tubo de la CNEA. Obteniendo experiencia en dicha tarea. Una vez finalizado el proceso de análisis y diseño del condensador, se realizaron los planos de ingeniería básica del mismo empleando un programa de diseño 3D.
Resumo:
Los sistemas de alarmas constituyen un elemento clave en las plantas modernas de procesos industriales. A lo largo de los años, los mismos han ido evolucionando de la mano del importante desarrollo en la industria del software, para pasar de ser simples paneles de anunciación y lámparas cableadas hasta complejos sistemas inteligentes que asisten al operador en sus funciones de operación. En el desarrollo de este trabajo se planteó diseñar un Sistema Avanzado de Alarmas para el Reactor Nuclear de Investigación RA6 contemplando las nuevas tecnologías existentes para incorporar mejoras a la actual sala de control. Para ello se trabajó siguiendo la metodología propuesta por la guía de diseño de sistemas de alarmas ANSI / ISA- SP-18. Para asistir al diseño y la verificación del sistema se utilizó un modelo termohidráulico de la planta desarrollado en Matlab/Simulink. Entre las nuevas herramientas incorporadas en el prototipo final obtenido se pueden mencionar: creación de archivos históricos, asignación de prioridades, supresiones de alarmas según estado operativo, filtrado y agrupamiento de alarmas.
Resumo:
En la actualidad casi la totalidad de los reactores nucleares necesitan, como combustible, uranio con una concentración de U"235 mayores a las naturales. En un marco de autoabastecimiento se impone la necesidad de dominar la tecnología necesaria para enriquecer uranio, siendo las centrifugas el método usado industrialmente hoy en día. Esta tecnología, por cuestiones de proliferación, es considerada sensitiva y en consecuencia la información sobre la misma se encuentra fuertemente limitada. En el presente trabajo se propone un modelo simplificado para diseñar y evaluar conceptualmente diseños mecánicos de rotores, proponiendo como figura de merito el trabajo separativo para centrifugas de gas. Con el mismo se pudo, evaluando distintos materiales para el rotor, encontrar radios y alturas óptimos para la capacidad separativa por unidad de masa para cada uno de ellos. Se evaluaron los parámetros que definen la recirculación interna del flujo dentro del rotor y los parámetros de diseño mecánico. Al comparar los resultados con los disponibles en bibliografía se vio que presentan buena concordancia mecánica.
Resumo:
Los Generadores de vapor (GVs) en una central nuclear están conformados por un manojo de tubos que actúan como una barrera entre el sistema primario contaminado y el secundario. A través de los tubos de GVs (TGVs) se desarrolla el intercambio de calor que produce el vapor que después accionará las turbinas de la central. Estos componentes están sometidos a unas condiciones térmicas, químicas y mecánicas bastante severas, que pueden provocar la aparición de defectos geométricos y volumétricos comprometiendo su integridad estructural. Es por esta razón que el mantenimiento de los GVs es importante para la operación económica y segura de las centrales nucleares. Uno de los principales mecanismos de desgaste de los tubos de GVs es el fenómeno conocido como fretting. El mismo provoca el adelgazamiento de las paredes de los TGVs debido a pequeños movimientos relativos entre superficies en contacto. Dado el caso particular de los GVs del reactor CAREM-25 en los que el circuito primario se encuentra del lado externo de los tubos que lo constituyen, la ocurrencia de este mecanismo de daño podría comprometer la integridad de los mismos haciéndolos más susceptibles al daño por colapso. El presente trabajo constituye una continuación del Proyecto integrador finalizado en el 2015 por Pablo Lazo en el que se evaluó la influencia de efectos de ovalización en el colapso de los tubos de los GVs. Se evalúa ahora la influencia de defectos volumétricos debido a fretting. Esto se realizó a través de modelos numéricos que estiman la presión de colapso en los tubos con y sin defecto. Los resultados de los modelos se compararon con resultados de expresiones analíticas obtenidas por otros autores, valores experimentales propios y otros valores de referencia. A partir del análisis de los resultados se derivaron algunas conclusiones que ayudan a entender el comportamiento de los tubos de GVs con defectos debido a mecanismo de daño por fretting. Además se desarrollaron expresiones matemáticas que ayudan a definir las dimensiones de los defectos que comprometen la integridad estructural de los TGVs en el caso del reactor CAREM-25.