5 resultados para transmission of defense signalclonal integration
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Nowadays, communication environments are already characterized by a myriad of competing and complementary technologies that aim to provide an ubiquitous connectivity service. Next Generation Networks need to hide this heterogeneity by providing a new abstraction level, while simultaneously be aware of the underlying technologies to deliver richer service experiences to the end-user. Moreover, the increasing interest for group-based multimedia services followed by their ever growing resource demands and network dynamics, has been boosting the research towards more scalable and exible network control approaches. The work developed in this Thesis enables such abstraction and exploits the prevailing heterogeneity in favor of a context-aware network management and adaptation. In this scope, we introduce a novel hierarchical control framework with self-management capabilities that enables the concept of Abstract Multiparty Trees (AMTs) to ease the control of multiparty content distribution throughout heterogeneous networks. A thorough evaluation of the proposed multiparty transport control framework was performed in the scope of this Thesis, assessing its bene ts in terms of network selection, delivery tree recon guration and resource savings. Moreover, we developed an analytical study to highlight the scalability of the AMT concept as well as its exibility in large scale networks and group sizes. To prove the feasibility and easy deployment characteristic of the proposed control framework, we implemented a proof-of-concept demonstrator that comprehends the main control procedures conceptually introduced. Its outcomes highlight a good performance of the multiparty content distribution tree control, including its local and global recon guration. In order to endow the AMT concept with the ability to guarantee the best service experience by the end-user, we integrate in the control framework two additional QoE enhancement approaches. The rst employs the concept of Network Coding to improve the robustness of the multiparty content delivery, aiming at mitigating the impact of possible packet losses in the end-user service perception. The second approach relies on a machine learning scheme to autonomously determine at each node the expected QoE towards a certain destination. This knowledge is then used by di erent QoE-aware network management schemes that, jointly, maximize the overall users' QoE. The performance and scalability of the control procedures developed, aided by the context and QoE-aware mechanisms, show the advantages of the AMT concept and the proposed hierarchical control strategy for the multiparty content distribution with enhanced service experience. Moreover we also prove the feasibility of the solution in a practical environment, and provide future research directions that bene t the evolved control framework and make it commercially feasible.
Resumo:
O presente trabalho situa a investigação em torno do marketing, particularmente do branding, territorial numa perspectiva holística e consubstanciadora de comportamentos, identidade e desenvolvimento territorial. Nesse âmbito, focaliza-se na problemática da amplitude e heterogeneidade de actores com capacidade de impacte na construção e transmissão da marca territorial e na necessidade da sua contemplação nos pressupostos de branding para a sustentação efectiva das marcas territoriais. A tese defendida advoga a relevância de empreender marcas territoriais assentes na colaboração e integração dos stakeholders no processo construtivo, de forma a potenciar a relação directa entre o branding, a identidade e comportamento territorial e aumentar o output da marca. Nesse sentido, essa orientação é consubstanciada sob a edificação conceptual de Stakeholders Based Branding e procede-se à exploração e aferição de contributos para o seu desenvolvimento e modelização. Empiricamente e tendo por base uma abordagem descritiva e exploratória, a investigação orienta-se a um trabalho de natureza qualitativa e interpretativa que estuda, neste âmbito e através da metodologia de Grounded Theory, 6 casos de estudo de municípios portugueses, através de 48 entrevistas em profundidade realizadas a líderes políticos e stakeholders territoriais e dados secundários. Os resultados obtidos em campo demonstram a relação entre a integração de stakeholders e o sentimento de branding e imagem territorial, reiterando que quanto mais envolvidos os stakeholders se sentem no processo construtivo da marca territorial, mais tendem a assumir a sua auto-imputação e que os territórios com posturas mais colaborativas na construção de branding são os que tendem a possuir auto-imagens e imagens públicas mais positivas. Paralelamente permitem aferir um conjunto de factores impulsores, implementados e/ou idealizados, tidos como relevantes para promover uma orientação de Stakeholders Based Branding, nos respectivos territórios. Do percurso investigativo emana um constructo de Stakeholders Based Branding, com carácter indutivo, respeitando os pressupostos da Grounded Theory e assente na modelização e constituição de proposições teóricas que visam contribuir para orientar a construção de marcas territoriais alicerçadas na integração e colaboração de stakeholders.
Resumo:
Nos últimos anos, as tecnologias que dão suporte à robótica avançaram expressivamente. É possível encontrar robôs de serviço nos mais variados campos. O próximo passo é o desenvolvimento de robôs inteligentes, com capacidade de comunicação em linguagem falada e de realizar trabalhos úteis em interação/cooperação com humanos. Torna-se necessário, então, encontrar um modo de interagir eficientemente com esses robôs, e com agentes inteligentes de maneira geral, que permita a transmissão de conhecimento em ambos os sentidos. Partiremos da hipótese de que é possível desenvolver um sistema de diálogo baseado em linguagem natural falada que resolva esse problema. Assim, o objetivo principal deste trabalho é a definição, implementação e avaliação de um sistema de diálogo utilizável na interação baseada em linguagem natural falada entre humanos e agentes inteligentes. Ao longo deste texto, mostraremos os principais aspectos da comunicação por linguagem falada, tanto entre os humanos, como também entre humanos e máquinas. Apresentaremos as principais categorias de sistemas de diálogo, com exemplos de alguns sistemas implementados, assim como ferramentas para desenvolvimento e algumas técnicas de avaliação. A seguir, entre outros aspectos, desenvolveremos os seguintes: a evolução levada a efeito na arquitetura computacional do Carl, robô utilizado neste trabalho; o módulo de aquisição e gestão de conhecimento, desenvolvido para dar suporte à interação; e o novo gestor de diálogo, baseado na abordagem de “Estado da Informação”, também concebido e implementado no âmbito desta tese. Por fim, uma avaliação experimental envolvendo a realização de diversas tarefas de interação com vários participantes voluntários demonstrou ser possível interagir com o robô e realizar as tarefas solicitadas. Este trabalho experimental incluiu avaliação parcial de funcionalidades, avaliação global do sistema de diálogo e avaliação de usabilidade.
Resumo:
Flexible radio transmitters based on the Software-Defined Radio (SDR) concept are gaining an increased research importance due to the unparalleled proliferation of new wireless standards operating at different frequencies, using dissimilar coding and modulation schemes, and targeted for different ends. In this new wireless communications paradigm, the physical layer of the radio transmitter must be able to support the simultaneous transmission of multi-band, multi-rate, multi-standard signals, which in practice is very hard or very inefficient to implement using conventional approaches. Nevertheless, the last developments in this field include novel all-digital transmitter architectures where the radio datapath is digital from the baseband up to the RF stage. Such concept has inherent high flexibility and poses an important step towards the development of SDR-based transmitters. However, the truth is that implementing such radio for a real world communications scenario is a challenging task, where a few key limitations are still preventing a wider adoption of this concept. This thesis aims exactly to address some of these limitations by proposing and implementing innovative all-digital transmitter architectures with inherent higher flexibility and integration, and where improving important figures of merit, such as coding efficiency, signal-to-noise ratio, usable bandwidth and in-band and out-of-band noise will also be addressed. In the first part of this thesis, the concept of transmitting RF data using an entirely digital approach based on pulsed modulation is introduced. A comparison between several implementation technologies is also presented, allowing to state that FPGAs provide an interesting compromise between performance, power efficiency and flexibility, thus making them an interesting choice as an enabling technology for pulse-based all-digital transmitters. Following this discussion, the fundamental concepts inherent to pulsed modulators, its key advantages, main limitations and typical enhancements suitable for all-digital transmitters are also presented. The recent advances regarding the two most common classes of pulse modulated transmitters, namely the RF and the baseband-level are introduced, along with several examples of state-of-the-art architectures found on the literature. The core of this dissertation containing the main developments achieved during this PhD work is then presented and discussed. The first key contribution to the state-of-the-art presented here consists in the development of a novel ΣΔ-based all-digital transmitter architecture capable of multiband and multi-standard data transmission in a very flexible and integrated way, where the pulsed RF output operating in the microwave frequency range is generated inside a single FPGA device. A fundamental contribution regarding the simultaneous transmission of multiple RF signals is then introduced by presenting and describing novel all-digital transmitter architectures that take advantage of multi-gigabit data serializers available on current high-end FPGAs in order to transmit in a time-interleaved approach multiple independent RF carriers. Further improvements in this design approach allowed to provide a two-stage up-conversion transmitter architecture enabling the fine frequency tuning of concurrent multichannel multi-standard signals. Finally, further improvements regarding two key limitations inherent to current all-digital transmitter approaches are then addressed, namely the poor coding efficiency and the combined high quality factor and tunability requirements of the RF output filter. The followed design approach based on poliphase multipath circuits allowed to create a new FPGA-embedded agile transmitter architecture that significantly improves important figures of merit, such as coding efficiency and SNR, while maintains the high flexibility that is required for supporting multichannel multimode data transmission.
Resumo:
The performance of real-time networks is under continuous improvement as a result of several trends in the digital world. However, these tendencies not only cause improvements, but also exacerbates a series of unideal aspects of real-time networks such as communication latency, jitter of the latency and packet drop rate. This Thesis focuses on the communication errors that appear on such realtime networks, from the point-of-view of automatic control. Specifically, it investigates the effects of packet drops in automatic control over fieldbuses, as well as the architectures and optimal techniques for their compensation. Firstly, a new approach to address the problems that rise in virtue of such packet drops, is proposed. This novel approach is based on the simultaneous transmission of several values in a single message. Such messages can be from sensor to controller, in which case they are comprised of several past sensor readings, or from controller to actuator in which case they are comprised of estimates of several future control values. A series of tests reveal the advantages of this approach. The above-explained approach is then expanded as to accommodate the techniques of contemporary optimal control. However, unlike the aforementioned approach, that deliberately does not send certain messages in order to make a more efficient use of network resources; in the second case, the techniques are used to reduce the effects of packet losses. After these two approaches that are based on data aggregation, it is also studied the optimal control in packet dropping fieldbuses, using generalized actuator output functions. This study ends with the development of a new optimal controller, as well as the function, among the generalized functions that dictate the actuator’s behaviour in the absence of a new control message, that leads to the optimal performance. The Thesis also presents a different line of research, related with the output oscillations that take place as a consequence of the use of classic co-design techniques of networked control. The proposed algorithm has the goal of allowing the execution of such classical co-design algorithms without causing an output oscillation that increases the value of the cost function. Such increases may, under certain circumstances, negate the advantages of the application of the classical co-design techniques. A yet another line of research, investigated algorithms, more efficient than contemporary ones, to generate task execution sequences that guarantee that at least a given number of activated jobs will be executed out of every set composed by a predetermined number of contiguous activations. This algorithm may, in the future, be applied to the generation of message transmission patterns in the above-mentioned techniques for the efficient use of network resources. The proposed task generation algorithm is better than its predecessors in the sense that it is capable of scheduling systems that cannot be scheduled by its predecessor algorithms. The Thesis also presents a mechanism that allows to perform multi-path routing in wireless sensor networks, while ensuring that no value will be counted in duplicate. Thereby, this technique improves the performance of wireless sensor networks, rendering them more suitable for control applications. As mentioned before, this Thesis is centered around techniques for the improvement of performance of distributed control systems in which several elements are connected through a fieldbus that may be subject to packet drops. The first three approaches are directly related to this topic, with the first two approaching the problem from an architectural standpoint, whereas the third one does so from more theoretical grounds. The fourth approach ensures that the approaches to this and similar problems that can be found in the literature that try to achieve goals similar to objectives of this Thesis, can do so without causing other problems that may invalidate the solutions in question. Then, the thesis presents an approach to the problem dealt with in it, which is centered in the efficient generation of the transmission patterns that are used in the aforementioned approaches.