1 resultado para transcriptional regulatory networks
em Repositório Institucional da Universidade de Aveiro - Portugal
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (13)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (5)
- Aston University Research Archive (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (120)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (22)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (16)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (5)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (40)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (3)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- DigitalCommons@The Texas Medical Center (32)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (8)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (4)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (2)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Gulbenkian de Ciência (5)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (127)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Martin Luther Universitat Halle Wittenberg, Germany (16)
- National Center for Biotechnology Information - NCBI (55)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (25)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (16)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (50)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (2)
- Scielo Saúde Pública - SP (20)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (4)
- Universidad Politécnica de Madrid (5)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (19)
- Universidade dos Açores - Portugal (1)
- Université de Lausanne, Switzerland (167)
- Université de Montréal (2)
- Université de Montréal, Canada (10)
- University of Michigan (1)
- University of Queensland eSpace - Australia (103)
- University of Washington (1)
Resumo:
When studying a biological regulatory network, it is usual to use boolean network models. In these models, boolean variables represent the behavior of each component of the biological system. Taking in account that the size of these state transition models grows exponentially along with the number of components considered, it becomes important to have tools to minimize such models. In this paper, we relate bisimulations, which are relations used in the study of automata (general state transition models) with attractors, which are an important feature of biological boolean models. Hence, we support the idea that bisimulations can be important tools in the study some main features of boolean network models.We also discuss the differences between using this approach and other well-known methodologies to study this kind of systems and we illustrate it with some examples.