2 resultados para top of mind
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Bragança and Morais Massifs are part of the mega-klippen ensemble of NW Iberia, comprising a tectonic pile of four allochthonous units stacked above the Central-Iberian Zone autochthon. On top of this pile, the Upper Allochthonous Terrane (UAT) includes different high-grade metamorphic series whose age and geodynamic meaning are controversial. Mafic granulites provided U–Pb zircon ages at 399±7 Ma, dating the Variscan emplacement of UAT. In contrast,U–Pb zircon ages of ky- and hb-eclogites, felsic/intermediate HP/HT-granulites and orthogneisses (ca. 500–480 Ma) are identical to those of gabbros (488 ± 10 Ma) and Grt-pyroxenites (495 ± 8 Ma) belonging to a mafic/ultramafic igneous suite that records upper mantle melting and mafic magma crustal underplating at these times. Gabbros intrude the high-grade units of UAT and did not underwent the HP metamorphic event experienced by eclogites and granulites. These features and the zircon dates resemblance among different lithologies, suggest that extensive age resetting of older events may have been correlative with the igneous suite emplacement/crystallisation. Accordingly, reconciliation of structural, petrological and geochronological evidence implies that the development and early deformation of UAT high-grade rocks should be ascribed to an orogenic cycle prior to ≈500 Ma. Undisputable dating of this cycle is impossible, but the sporadic vestiges of Cadomian ages cannot be disregarded. The ca. 500–480 Ma time-window harmonises well with the Lower Palaeozoic continental rifting that trace the VariscanWilson Cycle onset and the Rheic Ocean opening. Subsequent preservation of the high heat-flowregime, possibly related to the Palaeotethys back-arc basin development (ca. 450–420 Ma), would explain the 461 ± 10 Ma age yielded by some zircon domains in felsic granulites, conceivably reflecting zircon dissolution/ recrystallisation till Ordovician times, long before the Variscan paroxysm (ca. 400–390 Ma). This geodynamic scenario suggests also that UAT should have been part of Armorica before its emplacement on top of Iberia after Palaeotethys closure.
Resumo:
Hybridisation is a systematic process along which the characteristic features of hybrid logic, both at the syntactic and the semantic levels, are developed on top of an arbitrary logic framed as an institution. It also captures the construction of first-order encodings of such hybridised institutions into theories in first-order logic. The method was originally developed to build suitable logics for the specification of reconfigurable software systems on top of whatever logic is used to describe local requirements of each system’s configuration. Hybridisation has, however, a broader scope, providing a fresh example of yet another development in combining and reusing logics driven by a problem from Computer Science. This paper offers an overview of this method, proposes some new extensions, namely the introduction of full quantification leading to the specification of dynamic modalities, and exemplifies its potential through a didactical application. It is discussed how hybridisation can be successfully used in a formal specification course in which students progress from equational to hybrid specifications in a uniform setting, integrating paradigms, combining data and behaviour, and dealing appropriately with systems evolution and reconfiguration.