12 resultados para stop codon

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estudos recentes estabelecem uma ligação entre erros na tradução do mRNA e cancro, envelhecimento e neurodegeneração. RNAs de transferência mutantes que introduzem aminoácidos em locais errados nas proteínas aumentam a produção de espécies reactivas de oxigénio e a expressão de genes que regulam autofagia, ribofagia, degradação de proteínas não-funcionais e protecção contra o stress oxidativo. Erros na tradução do mRNA estão portanto relacionados com stress proteotóxico. Sabe-se agora que o mecanismo de toxicidade do crómio está associado à diminuição da fidelidade de tradução e à agregação de proteínas com malformações que destabilizam a sua estrutura terciária. Desta forma, é possível que os efeitos do stress ambiental ao nível da degeneração celular possam estar relacionados com a alteração da integridade da maquinaria da tradução. Neste estudo procedeu-se a uma avaliação alargada do impacto do stress ambiental na fidelidade da síntese de proteínas, utilizando S. cerevisiae como um sistema modelo. Para isso recorreu-se a repórteres policistrónicos de luciferase que permitiram quantificar especificamente a supressão de codões de terminação e o erro na leitura do codão AUG em células exposta a concentações não letais de metais pesados, etanol, cafeína e H2O2. Os resultados sugerem que a maquinaria de tradução é na generalidade muito resistente ao stress ambiental, devido a uma conjugação de mecanismos de homeostase que muito eficientemente antagonizam o impacto negativo dos erros de tradução. A nossa abordagem quantitativa permitiu-nos a identificar genes regulados por uma resposta programada ao stress ambiental que são também essenciais para mitigar a ocorrência de erros de tradução, nomeadamente, HSP12, HSP104 e RPN4. A exposição prolongada ao stress ambiental conduz à saturação dos mecanismos de homeostase, contribuindo para a acumulação de proteínas contendo erros de tradução e diminuindo a disponibilidade de proteínas funcionais directamente envolvidas na manutenção da fidelidade de tradução e integridade celular. Ao contrário de outras Hsps, a Hsp12p adopta normalmente uma localização membranar em condições de stress, que pode modular a fluidez e estabilidade membranar, sugerindo que a membrana plasmática é um alvo preferencial da perda de fidelidade da tradução. Para melhor compreender as respostas celulares aos erros de tradução, células contendo deleções em genes codificadores das Hsps foram transformadas com tRNAs mutantes que introduzem alterações no proteoma. Os nossos resultados demonstram que para além da resposta geral ao stress, estes tRNAs induzem alterações a nível do metabolismo celular e um aumento de aminoacilação com Metionina em vários tRNAs, sugerindo um mecanismo de protecção contra espécies reactivas de oxigénio. Em conclusão, este estudo sugere um papel para os erros de tradução na gestão de recursos energéticos e na adaptação das células a ambientes desfavoráveis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the genetic code is generally viewed as immutable, alterations to its standard form occur in the three domains of life. A remarkable alteration to the standard genetic code occurs in many fungi of the Saccharomycotina CTG clade where the Leucine CUG codon has been reassigned to Serine by a novel transfer RNA (Ser-tRNACAG). The host laboratory made a major breakthrough by reversing this atypical genetic code alteration in the human pathogen Candida albicans using a combination of tRNA engineering, gene recombination and forced evolution. These results raised the hypothesis that synthetic codon ambiguities combined with experimental evolution may release codons from their frozen state. In this thesis we tested this hypothesis using S. cerevisiae as a model system. We generated ambiguity at specific codons in a two-step approach, involving deletion of tRNA genes followed by expression of non-cognate tRNAs that are able to compensate the deleted tRNA. Driven by the notion that rare codons are more susceptible to reassignment than those that are frequently used, we used two deletion strains where there is no cognate tRNA to decode the rare CUC-Leu codon and AGG-Arg codon. We exploited the vulnerability of the latter by engineering mutant tRNAs that misincorporate Ser at these sites. These recombinant strains were evolved over time using experimental evolution. Although there was a strong negative impact on the growth rate of strains expressing mutant tRNAs at high level, such expression at low level had little effect on cell fitness. We found that not only codon ambiguity, but also destabilization of the endogenous tRNA pool has a strong negative impact in growth rate. After evolution, strains expressing the mutant tRNA at high level recovered significantly in several growth parameters, showing that these strains adapt and exhibit higher tolerance to codon ambiguity. A fluorescent reporter system allowing the monitoring of Ser misincorporation showed that serine was indeed incorporated and possibly codon reassignment was achieved. Beside the overall negative consequences of codon ambiguity, we demonstrated that codons that tolerate the loss of their cognate tRNA can also tolerate high Ser misincorporation. This raises the hypothesis that these codons can be reassigned to standard and eventually to new amino acids for the production of proteins with novel properties, contributing to the field of synthetic biology and biotechnology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidences indicate that tRNA modifications and tRNA modifying enzymes may play important roles in complex human diseases such as cancer, neurological disorders and mitochondrial-linked diseases. We postulate that expression deregulation of tRNA modifying enzymes affects the level of tRNA modifications and, consequently, their function and the translation efficiency of their tRNA corresponding codons. Due to the degeneracy of the genetic code, most amino acids are encoded by two to six synonymous codons. This degeneracy and the biased usage of synonymous codons cause alterations that can span from protein folding to enhanced translation efficiency of a select gene group. In this work, we focused on cancer and performed a meta-analysis study to compare microarray gene expression profiles, reported by previous studies and evaluate the codon usage of different types of cancer where tRNA modifying enzymes were found de-regulated. A total of 36 different tRNA modifying enzymes were found de-regulated in most cancer datasets analyzed. The codon usage analysis revealed a preference for codons ending in AU for the up-regulated genes, while the down-regulated genes show a preference for GC ending codons. Furthermore, a PCA biplot analysis showed this same tendency. We also analyzed the codon usage of the datasets where the CTU2 tRNA modifying enzyme was found deregulated as this enzyme affects the wobble position (position 34) of specific tRNAs. Our data points to a distinct codon usage pattern between up and downregulated genes in cancer, which might be caused by the deregulation of specific tRNA modifying enzymes. This codon usage bias may augment the transcription and translation efficiency of some genes that otherwise, in a normal situation, would be translated less efficiently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As proteínas existentes nas células são produzidas pelo mecanismo de tradução do mRNA, no qual a informação genética contida nos genes é descodificada em cadeias polipeptídicas. O código genético, que define as regras de descodificação do genoma, minimiza os erros de tradução do mRNA, garantindo a síntese de proteínas com elevada fidelidade. Esta é essencial para a estabilidade do proteoma e para a manutenção e funcionamento dos processos celulares. Em condições fisiológicas normais, os erros da tradução do mRNA ocorrem com frequências que variam de 10-3 a 10-5 erros por codão descodificado. Situações que aumentam este erro basal geralmente estão associadas ao envelhecimento, stresse e a doenças; no entanto, em certos organismos o código genético é traduzido naturalmente com elevado erro, indicando que a síntese de proteínas aberrantes pode de algum modo ser vantajosa. A fim de estudar a resposta celular aos erros de tradução do mRNA, construímos leveduras que incorporam serina no proteoma em resposta a um codão de leucina, usando a expressão constitutiva de um tRNASer mutante. Este fenómeno genético artificial provocou uma forte diminuição da esporulação, da viabilidade e da eficiência de mating, afectando imensamente a reprodução sexual da levedura. Observou-se também uma grande heterogeneidade no tamanho e na forma das células e elevada instabilidade genómica, com o aparecimento de populações poliplóides e aneuplóides. No sentido de clarificar as bases celulares e moleculares daqueles fenótipos e compreender melhor a biologia do erro de tradução do mRNA, construímos também células de levedura que inserem serina em resposta a um codão de leucina de modo indutível e controlado. Utilizaram-se perfis de mRNA total e de mRNA associado a polissomas para elucidar a resposta celular ao erro de tradução do mRNA. Observou-se a indução de genes envolvidos na resposta ao stresse geral, stresse oxidativo e na unfolded protein response (UPR). Um aumento significativo de espécies reactivas de oxigénio (ROS) e um forte impacto negativo na capacidade das células pós-mitóticas re-iniciarem o crescimento foram também observados. Este fenótipo de perda de viabilidade celular foi resgatado por scavangers de ROS, indicando que o stresse oxidativo é a principal causa de morte celular causada pelos erros de tradução. Este estudo levanta a hipótese de que o stresse oxidativo e a acumulação de ROS, ao invés do colapso súbito do proteoma, são as principais causas da degeneração celular e das doenças humanas associadas aos erros de tradução do genoma. ABSTRACT: Proteins are synthesized through the mechanism of translation, which uses the genetic code to transform the nucleic acids based information of the genome into the amino acids based information of the proteome. The genetic code evolved in such a manner that translational errors are kept to a minimum and even when they occur their impact is minimized by similar chemical properties of the amino acids. Protein synthesis fidelity is essential for proteome stability and for functional maintenance of cellular processes. Indeed, under normal physiological conditions, mistranslation occurs at frequencies that range from 10-3 to 10-5 errors per codon decoded. Situations where this basal error frequency increases are usually associated to aging and disease. However, there are some organisms where genetic code errors occur naturally at high level, suggesting that mRNA mistranslation can somehow be beneficial. In order to study the cellular response to mRNA mistranslation, we have engineered single codon mistranslation in yeast cells, using constitutive expression of mutant tRNASer genes. These mistranslating strains inserted serines at leucine-CUG sites on a proteome wide scale due to competition between the wild type tRNALeu with the mutant tRNASer. Such mistranslation event decreased yeast sporulation, viability and mating efficiencies sharply and affected sexual reproduction strongly. High heterogeneity in cell size and shape and high instability in the genome were also observed, with the appearance of some polyploid or aneuploid cell populations. To further study the cellular and molecular basis of those phenotypes and the biology of mRNA mistranslation, we have also engineered inducible mRNA misreading in yeast and used total mRNA and polysome associated mRNA profiling to determine whether codon misreading affects gene expression. Induced mistranslation up-regulated genes involved in the general stress response, oxidative stress and in the unfolded protein response (UPR). A significant increase in reactive oxygen species (ROS) and a strong negative impact on the capacity of post-mitotic cells to re-initiate growth in fresh media were also observed. This cell viability phenotype was rescued by scavengers of ROS, indicating that oxidative stress is the main cause of cell death caused by mRNA mistranslation. This study provides strong support for the hypothesis that oxidative stress and ROS accumulation, rather than sudden proteome collapse or major proteome disruption, are the main cause of the cellular degeneration observed in human diseases associated mRNA mistranslation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Um dos maiores avanços científicos do século XX foi o desenvolvimento de tecnologia que permite a sequenciação de genomas em larga escala. Contudo, a informação produzida pela sequenciação não explica por si só a sua estrutura primária, evolução e seu funcionamento. Para esse fim novas áreas como a biologia molecular, a genética e a bioinformática são usadas para estudar as diversas propriedades e funcionamento dos genomas. Com este trabalho estamos particularmente interessados em perceber detalhadamente a descodificação do genoma efectuada no ribossoma e extrair as regras gerais através da análise da estrutura primária do genoma, nomeadamente o contexto de codões e a distribuição dos codões. Estas regras estão pouco estudadas e entendidas, não se sabendo se poderão ser obtidas através de estatística e ferramentas bioinfomáticas. Os métodos tradicionais para estudar a distribuição dos codões no genoma e seu contexto não providenciam as ferramentas necessárias para estudar estas propriedades à escala genómica. As tabelas de contagens com as distribuições de codões, assim como métricas absolutas, estão actualmente disponíveis em bases de dados. Diversas aplicações para caracterizar as sequências genéticas estão também disponíveis. No entanto, outros tipos de abordagens a nível estatístico e outros métodos de visualização de informação estavam claramente em falta. No presente trabalho foram desenvolvidos métodos matemáticos e computacionais para a análise do contexto de codões e também para identificar zonas onde as repetições de codões ocorrem. Novas formas de visualização de informação foram também desenvolvidas para permitir a interpretação da informação obtida. As ferramentas estatísticas inseridas no modelo, como o clustering, análise residual, índices de adaptação dos codões revelaram-se importantes para caracterizar as sequências codificantes de alguns genomas. O objectivo final é que a informação obtida permita identificar as regras gerais que governam o contexto de codões em qualquer genoma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O desenvolvimento de equipamentos de descodificação massiva de genomas veio aumentar de uma forma brutal os dados disponíveis. No entanto, para desvendarmos informação relevante a partir da análise desses dados é necessário software cada vez mais específico, orientado para determinadas tarefas que auxiliem o investigador a obter conclusões o mais rápido possível. É nesse campo que a bioinformática surge, como aliado fundamental da biologia, uma vez que tira partido de métodos e infra-estruturas computacionais para desenvolver algoritmos e aplicações informáticas. Por outro lado, na maior parte das vezes, face a novas questões biológicas é necessário responder com novas soluções específicas, pelo que o desenvolvimento de aplicações se torna um desafio permanente para os engenheiros de software. Foi nesse contexto que surgiram os principais objectivos deste trabalho, centrados na análise de tripletos e de repetições em estruturas primárias de DNA. Para esse efeito, foram propostos novos métodos e novos algoritmos que permitirem o processamento e a obtenção de resultados sobre grandes volumes de dados. Ao nível da análise de tripletos de codões e de aminoácidos foi proposto um sistema concebido para duas vertentes: por um lado o processamento dos dados, por outro a disponibilização na Web dos dados processados, através de um mecanismo visual de composição de consultas. Relativamente à análise de repetições, foi proposto e desenvolvido um sistema para identificar padrões de nucleótidos e aminoácidos repetidos em sequências específicas, com particular aplicação em genes ortólogos. As soluções propostas foram posteriormente validadas através de casos de estudo que atestam a mais-valia do trabalho desenvolvido.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low level protein synthesis errors can have profound effects on normal cell physiology and disease development, namely neurodegeneration, cancer and aging. The biology of errors introduced into proteins during mRNA translation, herein referred as mistranslation, is not yet fully understood. In order to shed new light into this biological phenomenon, we have engineered constitutive codon misreading in S. cerevisiae, using a mutant tRNA that misreads leucine CUG codons as serine, representing a 240 fold increase in mRNA translational error relative to typical physiological error (0.0001%). Our studies show that mistranslation induces autophagic activity, increases accumulation of insoluble proteins, production of reactive oxygen species, and morphological disruption of the mitochondrial network. Mistranslation also up-regulates the expression of the longevity gene PNC1, which is a regulator of Sir2p deacetylase activity. We show here that both PNC1 and SIR2 are involved in the regulation of autophagy induced by mistranslation, but not by starvation-induced autophagy. Mistranslation leads to P-body but not stress-granule assembly, down-regulates the expression of ribosomal protein genes and increases slightly the selective degradation of ribosomes (ribophagy). The study also indicates that yeast cells are much more resistant to mistranslation than expected and highlights the importance of autophagy in the cellular response to mistranslation. Morpho-functional alterations of the mitochondrial network are the most visible phenotype of mistranslation. Since most of the basic cellular processes are conserved between yeast and humans, this study reinforces the importance of yeast as a model system to study mistranslation and suggests that oxidative stress and accumulation of misfolded proteins arising from aberrant protein synthesis are important causes of the cellular degeneration observed in human diseases associated to mRNA mistranslation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O gene ataxin-3 (ATXN3; 14q32.1) codifica uma proteína expressa ubiquamente, envolvida na via ubiquitina-proteassoma e na repressão da transcrição. Grande relevância tem sido dada ao gene ATXN3 após a identificação de uma expansão (CAG)n na sua região codificante, responsável pela ataxia mais comum em todo o mundo, SCA3 ou doença de Machado-Joseph (DMJ). A DMJ é uma doença neurodegenerativa, autossómica dominante, de início tardio. O tamanho do alelo expandido explica apenas uma parte do pleomorfismo da doença, evidenciando a importância do estudo de outros modificadores. Em doenças de poliglutaminas (poliQ), a toxicidade é causada por um ganho de função da proteína expandida; no entanto, a proteína normal parece ser, também, um dos agentes modificadores da patogénese. O gene ATXN3 possui dois parálogos humanos gerados por retrotransposição: ataxin-3 like (ATXN3L) no cromossoma X, e LOC100132280, ainda não caracterizado, no cromossoma 8. Estudos in vitro evidenciaram a capacidade da ATXN3L para clivar cadeias de ubiquitina, sendo o seu domínio proteolítico mais eficiente do que o domínio da ATXN3 parental. O objetivo deste estudo foi explorar a origem e a evolução das retrocópias ATXN3L e LOC100132280 (aqui denominadas ATXN3L1 e ATXN3L2), assim como testar a relevância funcional de ambas através de abordagens evolutivas e funcionais. Deste modo, para estudar a divergência evolutiva dos páralogos do gene ATXN3: 1) analisaram-se as suas filogenias e estimou-se a data de origem dos eventos de retrotransposição; 2) avaliaram-se as pressões seletivas a que têm sido sujeitos os três parálogos, ao longo da evolução dos primatas; e 3) explorou-se a evolução das repetições CAG, localizadas em três contextos genómicos diferentes, provavelmente sujeitos a diferentes pressões seletivas. Finalmente, para o retrogene que conserva uma open reading frame (ORF) intacta, ATXN3L1, analisou-se, in silico, a conservação dos locais e domínios proteicos da putativa proteína. Ademais, para este retrogene, foi estudado o padrão de expressão de mRNA, através da realização de PCR de Transcriptase Reversa, em 16 tecidos humanos. Os resultados obtidos sugerem que dois eventos independentes de retrotransposição estiveram na origem dos retrogenes ATXN3L1 e ATXN3L2, tendo o primeiro ocorrido há cerca de 63 milhões de anos (Ma) e o segundo após a divisão Platirrínios-Catarrínios, há cerca de 35 Ma. Adicionalmente, outras retrocópias foram encontradas em primatas e outros mamíferos, correspondendo, no entanto, a eventos mais recentes e independentes de retrotransposição. A abordagem evolutiva mostrou a existência de algumas constrições selectivas associadas à evolução do gene ATXN3L1, à semelhança do que acontece com ATXN3. Por outro lado, ATXN3L2 adquiriu codões stop prematuros que, muito provavelmente, o tornaram num pseudogene processado. Os resultados da análise de expressão mostraram que o gene ATXN3L1 é transcrito, pelo menos, em testículo humano; no entanto, a optimização final da amplificação específica dos transcriptos ATXN3L1 permitirá confirmar se a expressão se estende a outros tecidos. Relativamente ao mecanismo de mutação inerente à repetição CAG, os dois parálogos mostraram diferentes padrões de evolução: a retrocópia ATXN3L1 é altamente interrompida e pouco polimórfica, enquanto a ATXN3L2 apresenta tratos puros de (CAG)n em algumas espécies e tratos hexanucleotídicos de CGGCAG no homem e no chimpanzé. A recente aquisição da repetição CGGCAG pode ter resultado de uma mutação inicial de CAG para CGG, seguida de instabilidade que proporcionou a expansão dos hexanucleótidos.Estudos futuros poderão ser realizados no sentido de confirmar o padrão de expressão do gene ATXN3L1 e de detetar proteína endógena in vivo. Adicionalmente, a caracterização da proteina ataxina-3 like 1 e dos seus interatores moleculares poderá povidenciar informação acerca da sua relevância no estado normal e patológico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Várias espécies do género Candida traduzem o codão CUG de leucine como serina. Em C. albicans este codão é traduzido pelo tRNACAG Ser de serina que é reconhecido por leucil- e seril-tRNA sintetases (LeuRS e SerRS), permitindo a incorporação de leucina ou serina em posições com CUG. Em condições padrão de crescimento os codões CUG é incorporam 3% de leucina e 97% de serina, no entanto estes valores são flexíveis uma vez que a incorporação de serina pode variar entre 0.6% e 5% em resposta a condições de stress. Estudos anteriores realizados in vivo em Escherichia coli sugeriram que a ambiguidade em codões CUG é regulada pela SerRS. De facto, o gene da SerRS de C. albicans tem um codão CUG na posição 197 (Ser197) cuja descodificação ambígua resulta na produção de duas isoformas de SerRS. A isoforma SerRS_Leu197 é mais ativa, apesar de menos estável, que a isoforma SerRS_Ser197, suportando a ideia da existência de um feedback loop negativo, envolvendo estas duas isoformas de SerRS, a enzima LeuRS e o tRNACAG Ser, que mantem os níveis de incorporação de leucina no codões CUG baixos. Nesta tese demonstramos que tal mecanismo não é operacional nas células de C. albicans. De facto, os níveis de incorporação de leucina em codões CUG flutuam drasticamente em resposta a alterações ambientais. Por exemplo, a incorporação de leucina pode chegar a níveis de 49.33% na presença de macrófagos e anfotericina B, mostrando a notória tolerância de C. albicans à ambiguidade. Para compreender a relevância biológica da ambiguidade do código genético em C. albicans construímos estirpes que incorporam serina em vários codões. Apesar da taxa crescimento ter sido negativamente afetada em condições padrão de crescimento, as estirpes construídas crescem favoravelmente em várias condições de stresse, sugerindo que a ambiguidade desempenha um papel importante na adaptação a novos nichos ecológicos. O transcriptoma das estirpes construídas de C. albicans e Saccharomyces. cerevisiae mostram que as leveduras respondem à ambiguidade dos codões de modo distinto. A ambiguidade induziu uma desregulação moderada da expressão génica de C. albicans, mas ativou uma resposta comum ao stresse em S. cerevisiae. O único processo celular que foi induzido na maioria das estirpes foi a oxidação redução. De salientar, que enriquecimento em elementos cis de fatores de transcrição que regulam a resposta à ambiguidade em ambas as leveduras foi distinta, sugerindo que ambas respondem ao stresse de modo diferente. Na globalidade, o nosso estudo aprofunda o conhecimento da elevada tolerância à ambiguidade de codões em C. albicans. Os resultados sugerem que este fungo usa a ambiguidade do codão CUG durante infeção, possivelmente para modular a sua interação com o hospedeiro e a resposta a drogas antifúngicas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genetic code is not universal. Alterations to its standard form have been discovered in both prokaryotes and eukaryotes and demolished the dogma of an immutable code. For instance, several Candida species translate the standard leucine CUG codon as serine. In the case of the human pathogen Candida albicans, a serine tRNA (tRNACAGSer) incorporates in vivo 97% of serine and 3% of leucine in proteins at CUG sites. Such ambiguity is flexible and the level of leucine incorporation increases significantly in response to environmental stress. To elucidate the function of such ambiguity and clarify whether the identity of the CUG codon could be reverted from serine back to leucine, we have developed a forced evolution strategy to increase leucine incorporation at CUGs and a fluorescent reporter system to monitor such incorporation in vivo. Leucine misincorporation increased from 3% up to nearly 100%, reverting CUG identity from serine back to leucine. Growth assays showed that increasing leucine incorporation produced impressive arrays of phenotypes of high adaptive potential. In particular, strains with high levels of leucine misincorporation exhibited novel phenotypes and high level of tolerance to antifungals. Whole genome re-sequencing revealed that increasing levels of leucine incorporation were associated with accumulation of single nucleotide polymorphisms (SNPs) and loss of heterozygozity (LOH) in the higher misincorporating strains. SNPs accumulated preferentially in genes involved in cell adhesion, filamentous growth and biofilm formation, indicating that C. albicans uses its natural CUG ambiguity to increase genetic diversity in pathogenesis and drug resistance related processes. The overall data provided evidence for unantecipated flexibility of the C. albicans genetic code and highlighted new roles of codon ambiguity on the evolution of genetic and phenotypic diversity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main motivation for the work presented here began with previously conducted experiments with a programming concept at the time named "Macro". These experiments led to the conviction that it would be possible to build a system of engine control from scratch, which could eliminate many of the current problems of engine management systems in a direct and intrinsic way. It was also hoped that it would minimize the full range of software and hardware needed to make a final and fully functional system. Initially, this paper proposes to make a comprehensive survey of the state of the art in the specific area of software and corresponding hardware of automotive tools and automotive ECUs. Problems arising from such software will be identified, and it will be clear that practically all of these problems stem directly or indirectly from the fact that we continue to make comprehensive use of extremely long and complex "tool chains". Similarly, in the hardware, it will be argued that the problems stem from the extreme complexity and inter-dependency inside processor architectures. The conclusions are presented through an extensive list of "pitfalls" which will be thoroughly enumerated, identified and characterized. Solutions will also be proposed for the various current issues and for the implementation of these same solutions. All this final work will be part of a "proof-of-concept" system called "ECU2010". The central element of this system is the before mentioned "Macro" concept, which is an graphical block representing one of many operations required in a automotive system having arithmetic, logic, filtering, integration, multiplexing functions among others. The end result of the proposed work is a single tool, fully integrated, enabling the development and management of the entire system in one simple visual interface. Part of the presented result relies on a hardware platform fully adapted to the software, as well as enabling high flexibility and scalability in addition to using exactly the same technology for ECU, data logger and peripherals alike. Current systems rely on a mostly evolutionary path, only allowing online calibration of parameters, but never the online alteration of their own automotive functionality algorithms. By contrast, the system developed and described in this thesis had the advantage of following a "clean-slate" approach, whereby everything could be rethought globally. In the end, out of all the system characteristics, "LIVE-Prototyping" is the most relevant feature, allowing the adjustment of automotive algorithms (eg. Injection, ignition, lambda control, etc.) 100% online, keeping the engine constantly working, without ever having to stop or reboot to make such changes. This consequently eliminates any "turnaround delay" typically present in current automotive systems, thereby enhancing the efficiency and handling of such systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Candida albicans is the major fungal pathogen in humans, causing diseases ranging from mild skin infections to severe systemic infections in immunocompromised individuals. The pathogenic nature of this organism is mostly due to its capacity to proliferate in numerous body sites and to its ability to adapt to drastic changes in the environment. Candida albicans exhibit a unique translational system, decoding the leucine-CUG codon ambiguously as leucine (3% of codons) and serine (97%) using a hybrid serine tRNA (tRNACAGSer). This tRNACAGSer is aminoacylated by two aminoacyl tRNA synthetases (aaRSs): leucyl-tRNA synthetase (LeuRS) and seryl-tRNA synthetase (SerRS). Previous studies showed that exposure of C. albicans to macrophages, oxidative, pH stress and antifungals increases Leu misincorporation levels from 3% to 15%, suggesting that C. albicans has the ability to regulate mistranslation levels in response to host defenses, antifungals and environmental stresses. Therefore, the hypothesis tested in this work is that Leu and Ser misincorporation at CUG codons is dependent upon competition between the LeuRS and SerRS for the tRNACAGSer. To test this hypothesis, levels of the SerRS and LeuRS were indirectly quantified under different physiological conditions, using a fluorescent reporter system that measures the activity of the respective promoters. Results suggest that an increase in Leu misincorporation at CUG codons is associated with an increase in LeuRS expression, with levels of SerRS being maintained. In the second part of the work, the objective was to identify putative regulators of SerRS and LeuRS expression. To accomplish this goal, C. albicans strains from a transcription factor knock-out collection were transformed with the fluorescent reporter system and expression of both aaRSs was quantified. Alterations in the LeuRS/SerRS expression of mutant strains compared to wild type strain allowed the identification of 5 transcription factors as possible regulators of expression of LeuRS and SerRS: ASH1, HAP2, HAP3, RTG3 and STB5. Globally, this work provides the first step to elucidate the molecular mechanism of regulation of mistranslation in C. albicans.