4 resultados para solution structures

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objectivo principal deste trabalho foi estudar as propriedades e comportamento de polioxotungstatos (POM) do tipo Keggin com interesse em catálise oxidativa. Os estudos efectuados centraram-se no comportamento electroquímico dos aniões em meio não aquoso, na estabilidade das suas estruturas em diferentes meios, na sua capacidade de catalisar a oxidação de diferentes substratos orgânicos e na sua eficácia em oxidar, de forma selectiva, um modelo não fenólico da lenhina. Efectuou-se, igualmente, o estudo estrutural de diversos aniões pela técnica de EXAFS. Neste trabalho, prepararam-se e caracterizaram-se alguns dos sais de tetra-n-butilamónio (TBA) dos polioxotungstatos estudados: compostos de Keggin, TBAx[XW12O40], lacunares, TBAxHy[XW11O39], mono-substituídos, TBAxHy[XW11M(H2O)O39]·nH2O, com X= P e Si e M = CoII, NiII, ZnII, CuIl, RuIII, MnIII e FeIII e os compostos com mistura de átomos adenda TBAx[XW11VO40]·nH2O (X = P e Si). Seleccionou-se este conjunto de polioxotungstatos de forma a efectuar-se um estudo comparativo da influência da natureza do heteroátomo central (P e Si) e dos metais de transição M nas propriedades estudadas. O conjunto de sais de TBA dos silicotungstatos estudados mostraram ser isoestruturais, apresentando a mesma estrutura dos fosfotungstatos análogos. O comportamento electroquímico dos polioxotungstatos foi estudado em soluções de acetonitrilo por voltametria cíclica e electrólise a potencial controlado. Verificou-se a ocorrência de vários processos mono-electrónicos de oxi-redução, reversíveis ou quasi-reversíveis, associados aos átomos de WVI/V e a alguns dos metais de transição. Os metais em estado de oxidação +3 reduziram-se mais facilmente do que os átomos de WVI. O metal CuII apresentou um comportamento diferente dos outros metais de transição. Este metal, na estrutura do POM, reduziu-se a CuI, proporcionando a observação do anião [PW11CuIO39]6- pela primeira vez. A redução posterior do CuI conduziu à formação de Cu0, que se depositou na superfície do eléctrodo. A re-oxidação do cobre a CuII conduziu à reconstituição da estrutura do POM, nas condições estudadas. Constatou-se que a ocorrência de protões na fórmula molecular dos POMs influenciou o seu comportamento electroquímico. Para os compostos que apresentam protões, a redução dos átomos de tungsténio ocorreu a potenciais menos negativos do que para aqueles que não apresentam protões na sua fórmula. Para os primeiros observou-se a transferência global de um maior número de electrões no mesmo intervalo de potencial, originando soluções fortemente azuladas. Quando os catiões tetra-n-butilamónio foram substituídos por catiões de menor dimensão, como Li+ e Na+, ocorreu a formação de pares iónicos com os polianiões [PW12O40]3- e [SiW11VO40]5-, originando um aumento do potencial de redução. Não houve evidência da formação de pares iónicos com os catiões TBA+. Este foi o primeiro estudo sistemático do comportamento electroquímico dos aniões lacunares e mono-substituídos em meio não aquoso. Estudou-se a estrutura dos polioxotungstatos em sais de TBA e em soluções de acetonitrilo. A aplicação da técnica de EXAFS ao estudo deste tipo de compostos em solução foi realizada pela primeira vez. Pela análise estrutural nos sólidos verificou-se que, a natureza do metal de transição M e do átomo central X, na estrutura do POM, influenciam o tamanho dos vários octaedros que o constituem. Não se observaram diferenças significativas nas estruturas dos polianiões em solução. A estabilidade da estrutura dos polioxometalatos na presença de um excesso de H2O2, em soluções de acetonitrilo/H2O foi analisada por espectroscopia de absorção de EXAFS, RMN de 31P, IV e espectrofotometria de absorção no UV-Vis. De uma forma geral, os POMs em que o átomo central da estrutura é o Si apresentaram maior estabilidade do que os POMs correspondentes com átomo de P no centro. Em solução de acetonitrilo, na ausência de H2O2, todos os aniões mostraram ser estáveis durante vários dias. Em solução, na presença de H2O2 em excesso (H2O2/POM = 1300), o anião lacunar [PW11O39]7- não é estável, transformando-se no anião de Venturello, {PO4[W(O)(O2)2]4}3-, após a formação de [PW12O40]3-, como produto intermediário. Em relação aos aniões substituídos [PW11M(H2O)O39]p-, M = MnIII, RuIII, FeIII, CoII e ZnII, verificou-se o seguinte na presença de H2O2: os aniões com MnIII e CoII transformaram-se no anião de Keggin, [PW12O40]3-. Os aniões de RuIII e FeIII mantiveram as suas estruturas e o anião de ZnII decompôs-se em {HPO4[W(O)(O2)2]2}2- e fosfato. Para estes casos de não estabilidade estrutural, o processo de decomposição foi mais rápido na presença de maiores conteúdos de água. Pela análise de EXAFS, na presença de um menor excesso de H2O2 (H2O2/POM = 70) e apenas 8% de parte aquosa, verificou-se que os aniões substituídos por MnIII mantiveram a sua estrutura, embora o ligando H2O, coordenado ao Mn, tivesse sido substituído por um grupo oxo no polianião [SiW11Mn(H2O)O39]5-, e por um grupo peroxo no polianião [PW11Mn(H2O)O39]4-. O anião com RuIII, nestas condições, também mostrou substituir o seu ligando H2O por um grupo peroxo ou hidrogenoperoxo. Os polioxotungstatos mono-substituídos e lacunares mostraram ser catalisadores eficientes para a oxidação de cis-cicloocteno, geraniol e ciclooctano com H2O2. A maior novidade deste trabalho residiu na actividade catalítica apresentada pelos silicotungstatos estudados, contrariando o que é referido na literatura. Outro aspecto inovador foi o elevado valor de conversão obtido para a oxidação de ciclooctano. Este substrato foi oxidado com 74% de conversão, após 2h de reacção e com 80% de selectividade para o hidroperóxido de ciclooctilo, na presença do anião [PW11Fe(H2O)O39]4-. Os restantes produtos de reacção foram o ciclooctanol e a ciclooctanona. Os silicotungstatos apresentaram maior selectividade para o hidroperóxido de ciclooctilo do que os fosfotungstatos. O geraniol foi completamente oxidado após 3h de reacção, com 82% de selectividade para o 2,3-epoxigeraniol, na presença do anião [PW11Mn(H2O)O39]4-. O cis-cicloocteno foi oxidado ao seu epóxido, com 92% de conversão ao fim de 5h de reacção, na presença do anião lacunar [PW11O39]7-. O estudo da capacidade oxidativa do anião [SiW11VO40]5- foi analisada utilizando-se um modelo não fenólico da lenhina, a anisoína. Estudaram-se as condições favoráveis à obtenção de uma reacção selectiva para o anisilo, de forma a poder estudar-se a cinética da reacção. A estequiometria da reacção mostrou ser de 1:2 anisoína/POM. As ordens de reacção foram determinadas pelo método das velocidades iniciais e, a partir destes resultados, conheceu-se que o POM não estava envolvido no passo que limita a velocidade da reacção, sendo esta limitada pela transformação da anisoína. O estudo realizado sobre o efeito isotópico sugeriu que o passo que limitou a velocidade de reacção correspondeu à enolação da anisoína. Desta forma, observou-se pela primeira vez, que o POM oxida um modelo não fenólico da lenhina por via de enolação.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slender masonry structures are distributed all over the world and constitute a relevant part of the architectural and cultural heritage of humanity. Their protection against earthquakes is a topic of great concern among the scientific community. This concern mainly arises from the strong damage or complete loss suffered by this group of structures due to catastrophic events and the need and interest to preserve them. Although the great progress in technology, and in the knowledge of seismology and earthquake engineering, the preservation of these brittle and massive structures still represents a major challenge. Based on the research developed in this work it is proposed a methodology for the seismic risk assessment of slender masonry structures. The proposed methodology was applied for the vulnerability assessment of Nepalese Pagoda temples which follow very simple construction procedure and construction detailing in relation to seismic resistance requirements. The work is divided in three main parts. Firstly, particular structural fragilities and building characteristics of the important UNESCO classified Nepalese Pagoda temples which affect their seismic performance and dynamic properties are discussed. In the second part the simplified method proposed for seismic vulnerability assessment of slender masonry structures is presented. Finally, the methodology proposed in this work is applied to study Nepalese Pagoda temples, as well as in the efficiency assessment of seismic performance improvement solution compatible with original cultural and technological value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is about the combination of functional ferroelectric oxides with Multiwall Carbon Nanotubes for microelectronic applications, as for example potential 3 Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Miniaturized electronics are ubiquitous now. The drive to downsize electronics has been spurred by needs of more performance into smaller packages at lower costs. But the trend of electronics miniaturization challenges board assembly materials, processes, and reliability. Semiconductor device and integrated circuit technology, coupled with its associated electronic packaging, forms the backbone of high-performance miniaturized electronic systems. However, as size decreases and functionalization increases in the modern electronics further size reduction is getting difficult; below a size limit the signal reliability and device performance deteriorate. Hence miniaturization of siliconbased electronics has limitations. On this background the Road Map for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, designated as More than Moore; being one of them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. CNTs with their unique performance and three dimensionality at the nano-scale have been regarded as promising elements for miniaturized electronics [2]. CNTs are tubular in geometry and possess a unique set of properties, including ballistic electron transportation and a huge current caring capacity, which make them of great interest for future microelectronics [2]. Indeed CNTs might have a key role in the miniaturization of Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Moving from a traditional two dimensional (2D) design (as is the case of thin films) to a 3D structure (based on a tridimensional arrangement of unidimensional structures) will result in the high reliability and sensing of the signals due to the large contribution from the bottom electrode. One way to achieve this 3D design is by using CNTs. Ferroelectrics (FE) are spontaneously polarized and can have high dielectric constants and interesting pyroelectric, piezoelectric, and electrooptic properties, being a key application of FE electronic memories. However, combining CNTs with FE functional oxides is challenging. It starts with materials compatibility, since crystallization temperature of FE and oxidation temperature of CNTs may overlap. In this case low temperature processing of FE is fundamental. Within this context in this work a systematic study on the fabrication of CNTs - FE structures using low cost low temperature methods was carried out. The FE under study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate (BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in presence of MWCNTs and interfaces between the CNTs/FE are addressed in this work. The ferroelectric response locally measured by Piezoresponse Force Microscopy (PFM) clearly evidenced that even at low processing temperatures FE on CNTs retain its ferroelectric nature. The work started by verifying the thermal decomposition behavior under different conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non isothermal conditions, but morphology changes were observed for isothermal conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy (TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 ºC with a minimum sublimation. The activation energy for the decomposition of MWCNTs in air was calculated to lie between 80 and 108 kJ/mol. These results are relevant for the fabrication of MWCNTs – FE structures. Indeed we demonstrate that PZT can be deposited by sol gel at low temperatures on MWCNTs. And particularly interesting we prove that MWCNTs decrease the temperature and time for formation of PZT by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised at 500 ºC for 1 h was proved by PFM. In the continuation of this work we developed a low cost methodology of coating MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as a proof of concept was BT. BT is a well-known lead free perovskite used in many microelectronic applications. However, synthesis by solid state reaction is typically performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT structures are ferroelectric and exhibit an electromechanical response (15 pm/V). These results have broad implications since this strategy can also be extended to other compounds of materials with high crystallization temperatures. In addition the coverage of MWCNTs with FE can be optimized, in this case with non covalent functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). MWCNTs were used as templates to grow, in this case single phase multiferroic BFO nanorods. This work shows that the use of nitric solvent results in severe damages of the MWCNTs layers that results in the early oxidation of the tubes during the annealing treatment. It was also observed that the use of nitric solvent results in the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) of the nitric solution. The opening of the caps and filling of the tubes occurs simultaneously during the refluxing step. Furthermore we verified that MWCNTs have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs during the annealing process causes an oxygen deficient atmosphere that restrains the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of the obtained BFO nano structures indicates that MWCNTs act as template to grow 1D structure of BFO. Magnetic measurements on these BFO nanostructures revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 K. We also exploited the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by PFM. A week ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe. Our systematic work is a significant step forward in the development of 3D memory cells; it clearly demonstrates that CNTs can be combined with FE oxides and can be used, for example, as the next 3D generation of FERAMs, not excluding however other different applications in microelectronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alkali tantalates and niobates, including K(Ta / Nb)O3, Li(Ta / Nb)O3 and Na(Ta / Nb)O3, are a very promising ferroic family of lead-free compounds with perovskite-like structures. Their versatile properties make them potentially interesting for current and future application in microelectronics, photocatalysis, energy and biomedics. Among them potassium tantalate, KTaO3 (KTO), has been raising interest as an alternative for the well-known strontium titanate, SrTiO3 (STO). KTO is a perovskite oxide with a quantum paraelectric behaviour when electrically stimulated and a highly polarizable lattice, giving opportunity to tailor its properties via external or internal stimuli. However problems related with the fabrication of either bulk or 2D nanostructures makes KTO not yet a viable alternative to STO. Within this context and to contribute scientifically to the leverage tantalate based compounds applications, the main goals of this thesis are: i) to produce and characterise thin films of alkali tantalates by chemical solution deposition on rigid Si based substrates, at reduced temperatures to be compatible with Si technology, ii) to fulfil scientific knowledge gaps in these relevant functional materials related to their energetics and ii) to exploit alternative applications for alkali tantalates, as photocatalysis. In what concerns the synthesis attention was given to the understanding of the phase formation in potassium tantalate synthesized via distinct routes, to control the crystallization of desired perovskite structure and to avoid low temperature pyrochlore or K-deficient phases. The phase formation process in alkali tantalates is far from being deeply analysed, as in the case of Pb-containing perovskites, therefore the work was initially focused on the process-phase relationship to identify the driving forces responsible to regulate the synthesis. Comparison of phase formation paths in conventional solid-state reaction and sol-gel method was conducted. The structural analyses revealed that intermediate pyrochlore K2Ta2O6 structure is not formed at any stage of the reaction using conventional solid-state reaction. On the other hand in the solution based processes, as alkoxide-based route, the crystallization of the perovskite occurs through the intermediate pyrochlore phase; at low temperatures pyrochlore is dominant and it is transformed to perovskite at >800 °C. The kinetic analysis carried out by using Johnson-MehlAvrami-Kolmogorow model and quantitative X-ray diffraction (XRD) demonstrated that in sol-gel derived powders the crystallization occurs in two stages: i) at early stage of the reaction dominated by primary nucleation, the mechanism is phase-boundary controlled, and ii) at the second stage the low value of Avrami exponent, n ~ 0.3, does not follow any reported category, thus not permitting an easy identification of the mechanism. Then, in collaboration with Prof. Alexandra Navrotsky group from the University of California at Davis (USA), thermodynamic studies were conducted, using high temperature oxide melt solution calorimetry. The enthalpies of formation of three structures: pyrochlore, perovskite and tetragonal tungsten bronze K6Ta10.8O30 (TTB) were calculated. The enthalpies of formation from corresponding oxides, ∆Hfox, for KTaO3, KTa2.2O6 and K6Ta10.8O30 are -203.63 ± 2.84 kJ/mol, - 358.02 ± 3.74 kJ/mol, and -1252.34 ± 10.10 kJ/mol, respectively, whereas from elements, ∆Hfel, for KTaO3, KTa2.2O6 and K6Ta10.8O30 are -1408.96 ± 3.73 kJ/mol, -2790.82 ± 6.06 kJ/mol, and -13393.04 ± 31.15 kJ/mol, respectively. The possible decomposition reactions of K-deficient KTa2.2O6 pyrochlore to KTaO3 perovskite and Ta2O5 (reaction 1) or to TTB K6Ta10.8O30 and Ta2O5 (reaction 2) were proposed, and the enthalpies were calculated to be 308.79 ± 4.41 kJ/mol and 895.79 ± 8.64 kJ/mol for reaction 1 and reaction 2, respectively. The reactions are strongly endothermic, indicating that these decompositions are energetically unfavourable, since it is unlikely that any entropy term could override such a large positive enthalpy. The energetic studies prove that pyrochlore is energetically more stable phase than perovskite at low temperature. Thus, the local order of the amorphous precipitates drives the crystallization into the most favourable structure that is the pyrochlore one with similar local organization; the distance between nearest neighbours in the amorphous or short-range ordered phase is very close to that in pyrochlore. Taking into account the stoichiometric deviation in KTO system, the selection of the most appropriate fabrication / deposition technique in thin films technology is a key issue, especially concerning complex ferroelectric oxides. Chemical solution deposition has been widely reported as a processing method to growth KTO thin films, but classical alkoxide route allows to crystallize perovskite phase at temperatures >800 °C, while the temperature endurance of platinized Si wafers is ~700 °C. Therefore, alternative diol-based routes, with distinct potassium carboxylate precursors, was developed aiming to stabilize the precursor solution, to avoid using toxic solvents and to decrease the crystallization temperature of the perovskite phase. Studies on powders revealed that in the case of KTOac (solution based on potassium acetate), a mixture of perovskite and pyrochlore phases is detected at temperature as low as 450 °C, and gradual transformation into monophasic perovskite structure occurs as temperature increases up to 750 °C, however the desired monophasic KTaO3 perovskite phase is not achieved. In the case of KTOacac (solution with potassium acetylacetonate), a broad peak is detected at temperatures <650 °C, characteristic of amorphous structures, while at higher temperatures diffraction lines from pyrochlore and perovskite phases are visible and a monophasic perovskite KTaO3 is formed at >700 °C. Infrared analysis indicated that the differences are due to a strong deformation of the carbonate-based structures upon heating. A series of thin films of alkali tantalates were spin-coated onto Si-based substrates using diol-based routes. Interestingly, monophasic perovskite KTaO3 films deposited using KTOacac solution were obtained at temperature as low as 650 °C; films were annealed in rapid thermal furnace in oxygen atmosphere for 5 min with heating rate 30 °C/sec. Other compositions of the tantalum based system as LiTaO3 (LTO) and NaTaO3 (NTO), were successfully derived as well, onto Si substrates at 650 °C as well. The ferroelectric character of LTO at room temperature was proved. Some of dielectric properties of KTO could not be measured in parallel capacitor configuration due to either substrate-film or filmelectrode interfaces. Thus, further studies have to be conducted to overcome this issue. Application-oriented studies have also been conducted; two case studies: i) photocatalytic activity of alkali tantalates and niobates for decomposition of pollutant, and ii) bioactivity of alkali tantalate ferroelectric films as functional coatings for bone regeneration. Much attention has been recently paid to develop new type of photocatalytic materials, and tantalum and niobium oxide based compositions have demonstrated to be active photocatalysts for water splitting due to high potential of the conduction bands. Thus, various powders of alkali tantalates and niobates families were tested as catalysts for methylene blue degradation. Results showed promising activities for some of the tested compounds, and KNbO3 is the most active among them, reaching over 50 % degradation of the dye after 7 h under UVA exposure. However further modifications of powders can improve the performance. In the context of bone regeneration, it is important to have platforms that with appropriate stimuli can support the attachment and direct the growth, proliferation and differentiation of the cells. In lieu of this here we exploited an alternative strategy for bone implants or repairs, based on charged mediating signals for bone regeneration. This strategy includes coating metallic 316L-type stainless steel (316L-SST) substrates with charged, functionalized via electrical charging or UV-light irradiation, ferroelectric LiTaO3 layers. It was demonstrated that the formation of surface calcium phosphates and protein adsorption is considerably enhanced for 316L-SST functionalized ferroelectric coatings. Our approach can be viewed as a set of guidelines for the development of platforms electrically functionalized that can stimulate tissue regeneration promoting direct integration of the implant in the host tissue by bone ingrowth and, hence contributing ultimately to reduce implant failure.