4 resultados para solubilização de fosfatos
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
O principal objectivo desta investigação foi o desenvolvimento cimentos de fosfatos de cálcio com injetabilidade melhorada e propriedades mecânicas adequadas para aplicação em vertebroplastia. Os pós de fosfato de tricálcico (TCP) não dopados e dopados (Mg, Sr e Mn) usados neste estudo foram obtidos pelo processo de precipitação em meio aquoso, seguidos de tratamento térmico de forma a obter as fases pretendidas, α− e β−TCP. A substituição parcial de iões Ca por iões dopantes mostrou ter implicações em termos de estabilidade térmica da fase β−TCP. Os resultados demonstraram que as transformações de fase alotrópicas β↔α−TCP são fortemente influenciadas por variáveis experimentais como a taxa de arrefecimento, a presença de impurezas de pirofosfato de cálcio e a extensão do grau de dopagem com Mg. Os cimentos foram preparados através da mistura de pós, β−TCP (não dopados e dopados) e fosfato monocálcico monidratado (MCPM), com meios líquidos diferentes usando ácido cítrico e açucares (sucrose e frutose) como agentes retardadores de presa, e o polietilenoglicol, a hidroxipropilmetilcelulose e a polivinilpirrolidona como agentes gelificantes. Estes aditivos, principalmente o ácido cítrico, e o MCPM aumentam significativamente a força iónica do meio, influenciando a injetabilidade das pastas. Os resultados também mostraram que a distribuição de tamanho de partícula dos pós é um factor determinante na injetabilidade das pastas cimentícias. A combinação da co-dopagem de Mn e Sr com a adição de sucrose no líquido de presa e com uma distribuição de tamanho de partícula dos pós adequada resultou em cimentos de brushite com propriedades bastante melhoradas em termos de manuseamento, microestrutura, comportamento mecânico e biológico: (i) o tempo inicial de presa passou de ~3 min to ~9 min; (ii) as pastas cimentícias foram totalmente injectadas para uma razão liquido/pó de 0.28 mL g−1 com ausência do efeito de “filter-pressing” (separação de fases líquida e sólida); (iii) após imersão numa solução durante 48 h, as amostras de cimento molhadas apresentam uma porosidade total de ~32% e uma resistência a compressão de ~17 MPa, valor muito superior ao obtido para os cimentos sem açúcar não dopados (5 MPa) ou dopados só com Sr (10 MPa); e (iv) o desempenho biológico, incluindo a adesão e crescimento de células osteoblásticas na superfície do cimento, foi muito melhorado. Este conjunto de propriedades torna os cimentos excelentes para regeneração óssea e engenharia de tecidos, e muito promissores para aplicação em vertebroplastia.
Resumo:
Graças ao aumento da esperança média de vida do ser humano, a engenharia de tecidos tem sido uma área alvo de enorme investigação. A utilização de estruturas tridimensionais porosas e biodegradáveis, denominadas de scaffolds, como matriz para a adesão e proliferação celular tem sido amplamente investigada. Existem atualmente diversas técnicas para a produção destas estruturas mas o grau de exigência tem vindo a aumentar, existindo ainda lacunas que necessitam ser preenchidas. A técnica de robocasting consiste numa deposição camada a camada de uma pasta coloidal, seguindo um modelo computorizado (CAD) e permite a produção de scaffolds com porosidade tamanho de poro e fração de porosidade controlados, boa reprodutibilidade, e com formas variadas, as quais podem ser idênticas às dos defeitos ósseos a preencher. O presente estudo teve como objetivo produzir scaffolds porosos à base de fosfatos de cálcio através de robocasting. Para tal, foram estudadas duas composições de pós à base de β-TCP, uma pura e outra co-dopada com estrôncio, zinco e manganês. Inicialmente os pós foram sintetizados pelo método de precipitação química por via húmida. Após a síntese, estes foram filtrados, secos, calcinados a 1000ºC e posteriormente moídos até possuírem um tamanho médio de partícula de cerca de 1,5 μm. Os pós foram depois peneirados com uma malha de 40μm e caracterizados. Posteriormente foram preparadas várias suspensões e avaliado o seu comportamento reológico, utilizando Targon 1128 como dispersante, Hidroxipropilmetilcelulose (HPMC) como ligante e polietilenimina (PEI) como agente floculante. Por fim, e escolhida a melhor composição para a formação da pasta, foram produzidos scaffolds com diferentes porosidades, num equipamento de deposição robótica (3D Inks, LLC). Os scaffolds obtidos foram secos à temperatura ambiente durante 48 horas, sinterizados a 1100ºC e posteriormente caracterizados por microscopia eletrónica de varrimento (SEM), avaliação dos tamanhos de poro, porosidade total e testes mecânicos. Ambas as composições estudadas puderam ser transformadas em pastas extrudíveis, mas a pasta da composição pura apresentou uma consistência mais próxima do ideal, tendo originado scaffolds de melhor qualidade em termos de microestrutura e de propriedades mecânicas.
Resumo:
Os recursos renováveis têm sido um forte alvo de investigação científica nos últimos anos, onde o aproveitamento de biomassa e seus resíduos para a obtenção de compostos de valor acrescentado, combustíveis e energia têm sido abordados no conceito de biorrefinaria integrada. As indústrias de papel geram quantidades significativas de resíduos, nomeadamente a casca de eucalipto que é atualmente queimada para a geração de energia. De forma a valorizar este resíduo, a presente dissertação teve como objetivo extrair compostos triterpénicos, a partir casca externa de Eucalyptus globulus, utilizando solventes de extração alternativos - soluções aquosas de líquidos iónicos (LIs) – para substituir os solventes orgânicos actualmente utilizados. Os ácidos triterpénicos apresentam um elevado interesse na indústria cosmética, farmacêutica e alimentar graças às suas propriedades antiinflamatórias, antitumurais, entre outras. Primeiramente, caracterizou-se a casca externa de Eucalyptus globulus, e posteriormente procedeu-se ao estudo de solubilidade de ácido ursólico (AU, utilizado como molécula modelo) a 25 ºC em soluções aquosas de LIs e surfactantes de modo a selecionar os solventes mais eficientes para a extração. Deste trabalho conclui-se que a capacidade surfactante das soluções aquosas de LIs, particularmente [C4C1im][C8H17SO4], [C16C1im]Cl e [C14C1im]Cl, desempenham um papel fundamental para a solubilização de AU em água, podendo aumentar quase 16000 vezes a sua solubilidade, e permitiu recuperar cerca de 89% deste composto com simples adição de água como anti-solvente. Por fim, compararam-se as quantidades de ácidos triterpénicos extraídas a partir da casca de eucalipto com soluções aquosas de [C14C1im]Cl, metanol e com extração em soxhlet com diclorometano.
Resumo:
Marine Recirculating Aquaculture Systems (RAS) produce great volume of wastewater, which may be reutilized/recirculated or reutilized after undergoing different treatment/remediation methods, or partly discharged into neighbour water-bodies (DWW). Phosphates, in particular, are usually accumulated at high concentrations in DWW, both because its monitoring is not compulsory for fish production since it is not a limiting parameter, and also because there is no specific treatment so far developed to remove them, especially in what concerns saltwater effluents. As such, this work addresses two main scientific questions. One of them regards the understanding of the actual (bio)remediation methods applied to effluents produced in marine RAS, by identifying their advantages, drawbacks and gaps concerning their exploitation in saltwater effluents. The second one is the development of a new, innovative and efficient method for the treatment of saltwater effluents that potentially fulfil the gaps identified in the conventional treatments. Thereby, the aims of this thesis are: (i) to revise the conventional treatments targeting major contaminants in marine RAS effluents, with a particular focus on the bioremediation approaches already conducted for phosphates; (ii) to characterize and evaluate the potential of oyster-shell waste collected in Ria de Aveiro as a bioremediation agent of phosphates spiked into artificial saltwater, over different influencing factors (e.g., oyster-shell pre-treatment through calcination, particle size, adsorbent concentration). Despite the use of oyster-shells for phosphorous (P) removal has already been applied in freshwater, its biosorptive potential for P in saltwater was never evaluated, as far as I am aware. The results herein generated showed that NOS is mainly composed by carbonates, which are almost completely converted into lime (CaO) after calcination (COS). Such pre-treatment allowed obtaining a more reactive material for P removal, since higher removal percentages and adsorption capacity was observed for COS. Smaller particle size fractions for both NOS and COS samples also increased P removal. Kinetic models showed that NOS adsorption followed, simultaneously, Elovich and Intraparticle Difusion kinetic models, suggesting that P removal is both a diffusional and chemically rate-controlled process. The percentage of P removal by COS was not controlled by Intraparticle Diffusion and the Elovich model was the kinetic model that best fitted phosphate removal. This work demonstrated that waste oyster-shells, either NOS or COS, could be used as an effective biosorbent for P removal from seawater. Thereby, this biomaterial can sustain a cost-effective and eco-friendly bioremediation strategy with potential application in marine RAS.