4 resultados para semiconducting chalcogenide glasses
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
As piroxenas são um vasto grupo de silicatos minerais encontrados em muitas rochas ígneas e metamórficas. Na sua forma mais simples, estes silicatos são constituídas por cadeias de SiO3 ligando grupos tetrahédricos de SiO4. A fórmula química geral das piroxenas é M2M1T2O6, onde M2 se refere a catiões geralmente em uma coordenação octaédrica distorcida (Mg2+, Fe2+, Mn2+, Li+, Ca2+, Na+), M1 refere-se a catiões numa coordenação octaédrica regular (Al3+, Fe3+, Ti4+, Cr3+, V3+, Ti3+, Zr4+, Sc3+, Zn2+, Mg2+, Fe2+, Mn2+), e T a catiões em coordenação tetrahédrica (Si4+, Al3+, Fe3+). As piroxenas com estrutura monoclínica são designadas de clinopiroxenes. A estabilidade das clinopyroxenes num espectro de composições químicas amplo, em conjugação com a possibilidade de ajustar as suas propriedades físicas e químicas e a durabilidade química, têm gerado um interesse mundial devido a suas aplicações em ciência e tecnologia de materiais. Este trabalho trata do desenvolvimento de vidros e de vitro-cerâmicos baseadas de clinopiroxenas para aplicações funcionais. O estudo teve objectivos científicos e tecnológicos; nomeadamente, adquirir conhecimentos fundamentais sobre a formação de fases cristalinas e soluções sólidas em determinados sistemas vitro-cerâmicos, e avaliar a viabilidade de aplicação dos novos materiais em diferentes áreas tecnológicas, com especial ênfase sobre a selagem em células de combustível de óxido sólido (SOFC). Com este intuito, prepararam-se vários vidros e materiais vitro-cerâmicos ao longo das juntas Enstatite (MgSiO3) - diopsídio (CaMgSi2O6) e diopsídio (CaMgSi2O6) - Ca - Tschermak (CaAlSi2O6), os quais foram caracterizados através de um vasto leque de técnicas. Todos os vidros foram preparados por fusão-arrefecimento enquanto os vitro-cerâmicos foram obtidos quer por sinterização e cristalização de fritas, quer por nucleação e cristalização de vidros monolíticos. Estudaram-se ainda os efeitos de várias substituições iónicas em composições de diopsídio contendo Al na estrutura, sinterização e no comportamento durante a cristalização de vidros e nas propriedades dos materiais vitro-cerâmicos, com relevância para a sua aplicação como selantes em SOFC. Verificou-se que Foi observado que os vidros/vitro-cerâmicos à base de enstatite não apresentavam as características necessárias para serem usados como materiais selantes em SOFC, enquanto as melhores propriedades apresentadas pelos vitro-cerâmicos à base de diopsídio qualificaram-nos para futuros estudos neste tipo de aplicações. Para além de investigar a adequação dos vitro-cerâmicos à base de clinopyroxene como selantes, esta tese tem também como objetivo estudar a influência dos agentes de nucleação na nucleação em volume dos vitro-cerâmicos resultantes á base de diopsídio, de modo a qualificá-los como potenciais materiais hopedeiros de resíduos nucleares radioactivos.
Resumo:
Thin film solar cells have in recent years gained market quota against traditional silicon photovoltaic panels. These developments were in a large part due to CdTe solar panels on whose development started earlier than their competitors. Panels based on Cu(In,Ga)Se2 (CIGS), despite being more efficient in a laboratory and industrial scale than the CdTe ones, still need a growth technology cheaper and easier to apply in industry. Although usually presented as a good candidate to make cheap panels, CIGS uses rare and expensive materials as In and Ga. The price evolution of these materials might jeopardize CIGS future. This thesis presents three different studies. The first is the study of different processes for the incorporation of Ga in a hybrid CIGS growth system. This system is based on sputtering and thermal evaporation. This technology is, in principle, easier to be applied in the industry and solar cells with efficiencies around to 7% were fully made in Aveiro. In the second part of this thesis, a new material to replace CIGS in thin film solar cells is studied. The growth conditions and fundamental properties of Cu2ZnSnSe4 (CZTSe) were studied in depth. Suitable conditions of temperature and pressure for the growth of this material are reported. Its band gap energy was estimated at 1.05 eV and the Raman scattering peaks were identified. Solar cells made with this material showed efficiencies lower than 0.1%. Finally, preliminary work regarding the incorporation of selenium in Cu2ZnSnS4 (CZTS) thin films was carried out. The structural and morphological properties of thin films of Cu2ZnSn(S,Se)4 have been studied and the results show that the incorporation of selenium is higher in films with precursors rather with already formed Cu2SnS3 or Cu2ZnSnS4 thin films. A solar cell with 0.9 % of efficiency was prepared.
Resumo:
Bioactive glasses and glass-ceramics are a class of third generation biomaterials which elicit a special response on their surface when in contact with biological fluids, leading to strong bonding to living tissues. The purpose of the present study was to develop diopside based alkali-free bioactive glasses in order to achieve good sintering behaviour, high bioactivity, and a dissolution/ degradation rates compatible with the target applications in bone regeneration and tissue engineering. Another aim was to understand the structure-property relationships in the investigated bioactive glasses. In this quest, various glass compositions within the Diopside (CaMgSi2O6) – Fluorapatite (Ca5(PO4)3F) – Tricalcium phosphate (3CaO•P2O5) system have been investigated. All the glasses were prepared by melt-quenching technique and characterized by a wide array of complementary characterization techniques. The glass-ceramics were produced by sintering of glass powders compacts followed by a suitable heat treatment to promote the nucleation and crystallization phenomena. Furthermore, selected parent glass compositions were doped with several functional ions and an attempt to understand their effects on the glass structure, sintering ability and on the in vitro bio-degradation and biomineralization behaviours of the glasses was made. The effects of the same variables on the devitrification (nucleation and crystallization) behaviour of glasses to form bioactive glass-ceramics were also investigated. Some of the glasses exhibited high bio-mineralization rates, expressed by the formation of a surface hydroxyapatite layer within 1–12 h of immersion in a simulated body fluid (SBF) solution. All the glasses showed relatively lower degradation rates in comparison to that of 45S5 Bioglass®. Some of the glasses showed very good in vitro behaviour and the glasses co-doped with zinc and strontium showed an in vitro dose dependent behaviour. The as-designed bioactive glasses and glass–ceramic materials are excellent candidates for applications in bone regeneration and for the fabrication of scaffolds for tissue engineering.
Resumo:
Bioactive glasses and glass–ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaOMgOP2O5SiO2F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) – fluorapatite (9CaO•3P2O5•CaF2) – wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside – fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium content has been tested successfully both in vivo and in preliminary clinical trials. But this work needs to be continued and deepened. The dispersing of fine glass particles in aqueous media or in other suitable solvents, and the study of the most important factors that affect the rheology of the suspensions are essential steps to enable the manufacture of porous structures with tailor-made hierarchical pores by advanced processing techniques such as Robocasting.