2 resultados para seed classification
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
A importância e preocupação dedicadas à autonomia e independência das pessoas idosas e dos pacientes que sofrem de algum tipo de deficiência tem vindo a aumentar significativamente ao longo das últimas décadas. As cadeiras de rodas inteligentes (CRI) são tecnologias que podem ajudar este tipo de população a aumentar a sua autonomia, sendo atualmente uma área de investigação bastante ativa. Contudo, a adaptação das CRIs a pacientes específicos e a realização de experiências com utilizadores reais são assuntos de estudo ainda muito pouco aprofundados. A cadeira de rodas inteligente, desenvolvida no âmbito do Projeto IntellWheels, é controlada a alto nível utilizando uma interface multimodal flexível, recorrendo a comandos de voz, expressões faciais, movimentos de cabeça e através de joystick. Este trabalho teve como finalidade a adaptação automática da CRI atendendo às características dos potenciais utilizadores. Foi desenvolvida uma metodologia capaz de criar um modelo do utilizador. A investigação foi baseada num sistema de recolha de dados que permite obter e armazenar dados de voz, expressões faciais, movimentos de cabeça e do corpo dos pacientes. A utilização da CRI pode ser efetuada em diferentes situações em ambiente real e simulado e um jogo sério foi desenvolvido permitindo especificar um conjunto de tarefas a ser realizado pelos utilizadores. Os dados foram analisados recorrendo a métodos de extração de conhecimento, de modo a obter o modelo dos utilizadores. Usando os resultados obtidos pelo sistema de classificação, foi criada uma metodologia que permite selecionar a melhor interface e linguagem de comando da cadeira para cada utilizador. A avaliação para validação da abordagem foi realizada no âmbito do Projeto FCT/RIPD/ADA/109636/2009 - "IntellWheels - Intelligent Wheelchair with Flexible Multimodal Interface". As experiências envolveram um vasto conjunto de indivíduos que sofrem de diversos níveis de deficiência, em estreita colaboração com a Escola Superior de Tecnologia de Saúde do Porto e a Associação do Porto de Paralisia Cerebral. Os dados recolhidos através das experiências de navegação na CRI foram acompanhados por questionários preenchidos pelos utilizadores. Estes dados foram analisados estatisticamente, a fim de provar a eficácia e usabilidade na adequação da interface da CRI ao utilizador. Os resultados mostraram, em ambiente simulado, um valor de usabilidade do sistema de 67, baseado na opinião de uma amostra de pacientes que apresentam os graus IV e V (os mais severos) de Paralisia Cerebral. Foi também demonstrado estatisticamente que a interface atribuída automaticamente pela ferramenta tem uma avaliação superior à sugerida pelos técnicos de Terapia Ocupacional, mostrando a possibilidade de atribuir automaticamente uma linguagem de comando adaptada a cada utilizador. Experiências realizadas com distintos modos de controlo revelaram a preferência dos utilizadores por um controlo compartilhado com um nível de ajuda associado ao nível de constrangimento do paciente. Em conclusão, este trabalho demonstra que é possível adaptar automaticamente uma CRI ao utilizador com claros benefícios a nível de usabilidade e segurança.
Resumo:
Nos últimos anos temos vindo a assistir a uma mudança na forma como a informação é disponibilizada online. O surgimento da web para todos possibilitou a fácil edição, disponibilização e partilha da informação gerando um considerável aumento da mesma. Rapidamente surgiram sistemas que permitem a coleção e partilha dessa informação, que para além de possibilitarem a coleção dos recursos também permitem que os utilizadores a descrevam utilizando tags ou comentários. A organização automática dessa informação é um dos maiores desafios no contexto da web atual. Apesar de existirem vários algoritmos de clustering, o compromisso entre a eficácia (formação de grupos que fazem sentido) e a eficiência (execução em tempo aceitável) é difícil de encontrar. Neste sentido, esta investigação tem por problemática aferir se um sistema de agrupamento automático de documentos, melhora a sua eficácia quando se integra um sistema de classificação social. Analisámos e discutimos dois métodos baseados no algoritmo k-means para o clustering de documentos e que possibilitam a integração do tagging social nesse processo. O primeiro permite a integração das tags diretamente no Vector Space Model e o segundo propõe a integração das tags para a seleção das sementes iniciais. O primeiro método permite que as tags sejam pesadas em função da sua ocorrência no documento através do parâmetro Social Slider. Este método foi criado tendo por base um modelo de predição que sugere que, quando se utiliza a similaridade dos cossenos, documentos que partilham tags ficam mais próximos enquanto que, no caso de não partilharem, ficam mais distantes. O segundo método deu origem a um algoritmo que denominamos k-C. Este para além de permitir a seleção inicial das sementes através de uma rede de tags também altera a forma como os novos centróides em cada iteração são calculados. A alteração ao cálculo dos centróides teve em consideração uma reflexão sobre a utilização da distância euclidiana e similaridade dos cossenos no algoritmo de clustering k-means. No contexto da avaliação dos algoritmos foram propostos dois algoritmos, o algoritmo da “Ground truth automática” e o algoritmo MCI. O primeiro permite a deteção da estrutura dos dados, caso seja desconhecida, e o segundo é uma medida de avaliação interna baseada na similaridade dos cossenos entre o documento mais próximo de cada documento. A análise de resultados preliminares sugere que a utilização do primeiro método de integração das tags no VSM tem mais impacto no algoritmo k-means do que no algoritmo k-C. Além disso, os resultados obtidos evidenciam que não existe correlação entre a escolha do parâmetro SS e a qualidade dos clusters. Neste sentido, os restantes testes foram conduzidos utilizando apenas o algoritmo k-C (sem integração de tags no VSM), sendo que os resultados obtidos indicam que a utilização deste algoritmo tende a gerar clusters mais eficazes.