3 resultados para robust estimator
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Os Modelos de Equações Simultâneas (SEM) são modelos estatísticos com muita tradição em estudos de Econometria, uma vez que permitem representar e estudar uma vasta gama de processos económicos. Os estimadores mais usados em SEM resultam da aplicação do Método dos Mínimos Quadrados ou do Método da Máxima Verosimilhança, os quais não são robustos. Em Maronna e Yohai (1997), os autores propõem formas de “robustificar” esses estimadores. Um outro método de estimação com interesse nestes modelos é o Método dos Momentos Generalizado (GMM), o qual também conduz a estimadores não robustos. Estimadores que sofrem de falta de robustez são muito inconvenientes uma vez que podem conduzir a resultados enganadores quando são violadas as hipóteses subjacentes ao modelo assumido. Os estimadores robustos são de grande valor, em particular quando os modelos em estudo são complexos, como é o caso dos SEM. O principal objectivo desta investigação foi o de procurar tais estimadores tendo-se construído um estimador robusto a que se deu o nome de GMMOGK. Trata-se de uma versão robusta do estimador GMM. Para avaliar o desempenho do novo estimador foi feito um adequado estudo de simulação e foi também feita a aplicação do estimador a um conjunto de dados reais. O estimador robusto tem um bom desempenho nos modelos heterocedásticos considerados e, nessas condições, comporta-se melhor do que os estimadores não robustos usados no estudo. Contudo, quando a análise é feita em cada equação separadamente, a especificidade de cada equação individual e a estrutura de dependência do sistema são dois aspectos que influenciam o desempenho do estimador, tal como acontece com os estimadores usuais. Para enquadrar a investigação, o texto inclui uma revisão de aspectos essenciais dos SEM, o seu papel em Econometria, os principais métodos de estimação, com particular ênfase no GMM, e uma curta introdução à estimação robusta.
Resumo:
O objectivo principal da presente tese consiste no desenvolvimento de estimadores robustos do variograma com boas propriedades de eficiência. O variograma é um instrumento fundamental em Geoestatística, pois modela a estrutura de dependência do processo em estudo e influencia decisivamente a predição de novas observações. Os métodos tradicionais de estimação do variograma não são robustos, ou seja, são sensíveis a pequenos desvios das hipóteses do modelo. Essa questão é importante, pois as propriedades que motivam a aplicação de tais métodos, podem não ser válidas nas vizinhanças do modelo assumido. O presente trabalho começa por conter uma revisão dos principais conceitos em Geoestatística e da estimação tradicional do variograma. De seguida, resumem-se algumas noções fundamentais sobre robustez estatística. No seguimento, apresenta-se um novo método de estimação do variograma que se designou por estimador de múltiplos variogramas. O método consiste em quatro etapas, nas quais prevalecem, alternadamente, os critérios de robustez ou de eficiência. A partir da amostra inicial, são calculadas, de forma robusta, algumas estimativas pontuais do variograma; com base nessas estimativas pontuais, são estimados os parâmetros do modelo pelo método dos mínimos quadrados; as duas fases anteriores são repetidas, criando um conjunto de múltiplas estimativas da função variograma; por fim, a estimativa final do variograma é definida pela mediana das estimativas obtidas anteriormente. Assim, é possível obter um estimador que tem boas propriedades de robustez e boa eficiência em processos Gaussianos. A investigação desenvolvida revelou que, quando se usam estimativas discretas na primeira fase da estimação do variograma, existem situações onde a identificabilidade dos parâmetros não está assegurada. Para os modelos de variograma mais comuns, foi possível estabelecer condições, pouco restritivas, que garantem a unicidade de solução na estimação do variograma. A estimação do variograma supõe sempre a estacionaridade da média do processo. Como é importante que existam procedimentos objectivos para avaliar tal condição, neste trabalho sugere-se um teste para validar essa hipótese. A estatística do teste é um estimador-MM, cuja distribuição é desconhecida nas condições de dependência assumidas. Tendo em vista a sua aproximação, apresenta-se uma versão do método bootstrap adequada ao estudo de observações dependentes de processos espaciais. Finalmente, o estimador de múltiplos variogramas é avaliado em termos da sua aplicação prática. O trabalho contém um estudo de simulação que confirma as propriedades estabelecidas. Em todos os casos analisados, o estimador de múltiplos variogramas produziu melhores resultados do que as alternativas usuais, tanto para a distribuição assumida, como para distribuições contaminadas.
Resumo:
As técnicas estatísticas são fundamentais em ciência e a análise de regressão linear é, quiçá, uma das metodologias mais usadas. É bem conhecido da literatura que, sob determinadas condições, a regressão linear é uma ferramenta estatística poderosíssima. Infelizmente, na prática, algumas dessas condições raramente são satisfeitas e os modelos de regressão tornam-se mal-postos, inviabilizando, assim, a aplicação dos tradicionais métodos de estimação. Este trabalho apresenta algumas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, em particular na estimação de modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. A investigação é desenvolvida em três vertentes, nomeadamente na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, na estimação do parâmetro ridge em regressão ridge e, por último, em novos desenvolvimentos na estimação com máxima entropia. Na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, o trabalho desenvolvido evidencia um melhor desempenho dos estimadores de máxima entropia em relação ao estimador de máxima verosimilhança. Este bom desempenho é notório em modelos com poucas observações por estado e em modelos com um grande número de estados, os quais são comummente afetados por colinearidade. Espera-se que a utilização de estimadores de máxima entropia contribua para o tão desejado aumento de trabalho empírico com estas fronteiras de produção. Em regressão ridge o maior desafio é a estimação do parâmetro ridge. Embora existam inúmeros procedimentos disponíveis na literatura, a verdade é que não existe nenhum que supere todos os outros. Neste trabalho é proposto um novo estimador do parâmetro ridge, que combina a análise do traço ridge e a estimação com máxima entropia. Os resultados obtidos nos estudos de simulação sugerem que este novo estimador é um dos melhores procedimentos existentes na literatura para a estimação do parâmetro ridge. O estimador de máxima entropia de Leuven é baseado no método dos mínimos quadrados, na entropia de Shannon e em conceitos da eletrodinâmica quântica. Este estimador suplanta a principal crítica apontada ao estimador de máxima entropia generalizada, uma vez que prescinde dos suportes para os parâmetros e erros do modelo de regressão. Neste trabalho são apresentadas novas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, tendo por base o estimador de máxima entropia de Leuven, a teoria da informação e a regressão robusta. Os estimadores desenvolvidos revelam um bom desempenho em modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. Por último, são apresentados alguns códigos computacionais para estimação com máxima entropia, contribuindo, deste modo, para um aumento dos escassos recursos computacionais atualmente disponíveis.