2 resultados para r codes

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Maximum distance separable (MDS) convolutional codes are characterized through the property that the free distance meets the generalized Singleton bound. The existence of free MDS convolutional codes over Zpr was recently discovered in Oued and Sole (IEEE Trans Inf Theory 59(11):7305–7313, 2013) via the Hensel lift of a cyclic code. In this paper we further investigate this important class of convolutional codes over Zpr from a new perspective. We introduce the notions of p-standard form and r-optimal parameters to derive a novel upper bound of Singleton type on the free distance. Moreover, we present a constructive method for building general (non necessarily free) MDS convolutional codes over Zpr for any given set of parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main results of this paper are twofold: the first one is a matrix theoretical result. We say that a matrix is superregular if all of its minors that are not trivially zero are nonzero. Given a a×b, a ≥ b, superregular matrix over a field, we show that if all of its rows are nonzero then any linear combination of its columns, with nonzero coefficients, has at least a−b + 1 nonzero entries. Secondly, we make use of this result to construct convolutional codes that attain the maximum possible distance for some fixed parameters of the code, namely, the rate and the Forney indices. These results answer some open questions on distances and constructions of convolutional codes posted in the literature.