2 resultados para power cycle prediction
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
The PhD project addresses the potential of using concentrating solar power (CSP) plants as a viable alternative energy producing system in Libya. Exergetic, energetic, economic and environmental analyses are carried out for a particular type of CSP plants. The study, although it aims a particular type of CSP plant – 50 MW parabolic trough-CSP plant, it is sufficiently general to be applied to other configurations. The novelty of the study, in addition to modeling and analyzing the selected configuration, lies in the use of a state-of-the-art exergetic analysis combined with the Life Cycle Assessment (LCA). The modeling and simulation of the plant is carried out in chapter three and they are conducted into two parts, namely: power cycle and solar field. The computer model developed for the analysis of the plant is based on algebraic equations describing the power cycle and the solar field. The model was solved using the Engineering Equation Solver (EES) software; and is designed to define the properties at each state point of the plant and then, sequentially, to determine energy, efficiency and irreversibility for each component. The developed model has the potential of using in the preliminary design of CSPs and, in particular, for the configuration of the solar field based on existing commercial plants. Moreover, it has the ability of analyzing the energetic, economic and environmental feasibility of using CSPs in different regions of the world, which is illustrated for the Libyan region in this study. The overall feasibility scenario is completed through an hourly analysis on an annual basis in chapter Four. This analysis allows the comparison of different systems and, eventually, a particular selection, and it includes both the economic and energetic components using the “greenius” software. The analysis also examined the impact of project financing and incentives on the cost of energy. The main technological finding of this analysis is higher performance and lower levelized cost of electricity (LCE) for Libya as compared to Southern Europe (Spain). Therefore, Libya has the potential of becoming attractive for the establishment of CSPs in its territory and, in this way, to facilitate the target of several European initiatives that aim to import electricity generated by renewable sources from North African and Middle East countries. The analysis is presented a brief review of the current cost of energy and the potential of reducing the cost from parabolic trough- CSP plant. Exergetic and environmental life cycle assessment analyses are conducted for the selected plant in chapter Five; the objectives are 1) to assess the environmental impact and cost, in terms of exergy of the life cycle of the plant; 2) to find out the points of weakness in terms of irreversibility of the process; and 3) to verify whether solar power plants can reduce environmental impact and the cost of electricity generation by comparing them with fossil fuel plants, in particular, Natural Gas Combined Cycle (NGCC) plant and oil thermal power plant. The analysis also targets a thermoeconomic analysis using the specific exergy costing (SPECO) method to evaluate the level of the cost caused by exergy destruction. The main technological findings are that the most important contribution impact lies with the solar field, which reports a value of 79%; and the materials with the vi highest impact are: steel (47%), molten salt (25%) and synthetic oil (21%). The “Human Health” damage category presents the highest impact (69%) followed by the “Resource” damage category (24%). In addition, the highest exergy demand is linked to the steel (47%); and there is a considerable exergetic demand related to the molten salt and synthetic oil with values of 25% and 19%, respectively. Finally, in the comparison with fossil fuel power plants (NGCC and Oil), the CSP plant presents the lowest environmental impact, while the worst environmental performance is reported to the oil power plant followed by NGCC plant. The solar field presents the largest value of cost rate, where the boiler is a component with the highest cost rate among the power cycle components. The thermal storage allows the CSP plants to overcome solar irradiation transients, to respond to electricity demand independent of weather conditions, and to extend electricity production beyond the availability of daylight. Numerical analysis of the thermal transient response of a thermocline storage tank is carried out for the charging phase. The system of equations describing the numerical model is solved by using time-implicit and space-backward finite differences and which encoded within the Matlab environment. The analysis presented the following findings: the predictions agree well with the experiments for the time evolution of the thermocline region, particularly for the regions away from the top-inlet. The deviations observed in the near-region of the inlet are most likely due to the high-level of turbulence in this region due to the localized level of mixing resulting; a simple analytical model to take into consideration this increased turbulence level was developed and it leads to some improvement of the predictions; this approach requires practically no additional computational effort and it relates the effective thermal diffusivity to the mean effective velocity of the fluid at each particular height of the system. Altogether the study indicates that the selected parabolic trough-CSP plant has the edge over alternative competing technologies for locations where DNI is high and where land usage is not an issue, such as the shoreline of Libya.
Resumo:
Vitis vinifera L., the most widely cultivated fruit crop in the world, was the starting point for the development of this PhD thesis. This subject was exploited following on two actual trends: i) the development of rapid, simple, and high sensitive methodologies with minimal sample handling; and ii) the valuation of natural products as a source of compounds with potential health benefits. The target group of compounds under study were the volatile terpenoids (mono and sesquiterpenoids) and C13 norisoprenoids, since they may present biological impact, either from the sensorial point of view, as regards to the wine aroma, or by the beneficial properties for the human health. Two novel methodologies for quantification of C13 norisoprenoids in wines were developed. The first methodology, a rapid method, was based on the headspace solid-phase microextraction combined with gas chromatography-quadrupole mass spectrometry operating at selected ion monitoring mode (HS-SPME/GC-qMS-SIM), using GC conditions that allowed obtaining a C13 norisoprenoid volatile signature. It does not require any pre-treatment of the sample, and the C13 norisoprenoid composition of the wine was evaluated based on the chromatographic profile and specific m/z fragments, without complete chromatographic separation of its components. The second methodology, used as reference method, was based on the HS-SPME/GC-qMS-SIM, allowing the GC conditions for an adequate chromatographic resolution of wine components. For quantification purposes, external calibration curves were constructed with β-ionone, with regression coefficient (r2) of 0.9968 (RSD 12.51 %) and 0.9940 (RSD of 1.08 %) for the rapid method and for the reference method, respectively. Low detection limits (1.57 and 1.10 μg L-1) were observed. These methodologies were applied to seventeen white and red table wines. Two vitispirane isomers (158-1529 L-1) and 1,1,6-trimethyl-1,2-dihydronaphthalene (TDN) (6.42-39.45 μg L-1) were quantified. The data obtained for vitispirane isomers and TDN using the two methods were highly correlated (r2 of 0.9756 and 0.9630, respectively). A rapid methodology for the establishment of the varietal volatile profile of Vitis vinifera L. cv. 'Fernão-Pires' (FP) white wines by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (HS-SPME/GCxGC-TOFMS) was developed. Monovarietal wines from different harvests, Appellations, and producers were analysed. The study was focused on the volatiles that seem to be significant to the varietal character, such as mono and sesquiterpenic compounds, and C13 norisoprenoids. Two-dimensional chromatographic spaces containing the varietal compounds using the m/z fragments 93, 121, 161, 175 and 204 were established as follows: 1tR = 255-575 s, 2tR = 0,424-1,840 s, for monoterpenoids, 1tR = 555-685 s, 2tR = 0,528-0,856 s, for C13 norisoprenoids, and 1tR = 695-950 s, 2tR = 0,520-0,960 s, for sesquiterpenic compounds. For the three chemical groups under study, from a total of 170 compounds, 45 were determined in all wines, allowing defining the "varietal volatile profile" of FP wine. Among these compounds, 15 were detected for the first time in FP wines. This study proposes a HS-SPME/GCxGC-TOFMS based methodology combined with classification-reference sample to be used for rapid assessment of varietal volatile profile of wines. This approach is very useful to eliminate the majority of the non-terpenic and non-C13 norisoprenic compounds, allowing the definition of a two-dimensional chromatographic space containing these compounds, simplifying the data compared to the original data, and reducing the time of analysis. The presence of sesquiterpenic compounds in Vitis vinifera L. related products, to which are assigned several biological properties, prompted us to investigate the antioxidant, antiproliferative and hepatoprotective activities of some sesquiterpenic compounds. Firstly, the antiradical capacity of trans,trans-farnesol, cis-nerolidol, α-humulene and guaiazulene was evaluated using chemical (DPPH• and hydroxyl radicals) and biological (Caco-2 cells) models. Guaiazulene (IC50= 0.73 mM) was the sesquiterpene with higher scavenger capacity against DPPH•, while trans,trans-farnesol (IC50= 1.81 mM) and cis-nerolidol (IC50= 1.48 mM) were more active towards hydroxyl radicals. All compounds, with the exception of α-humulene, at non-cytotoxic levels (≤ 1 mM), were able to protect Caco-2 cells from oxidative stress induced by tert-butyl hydroperoxide. The activity of the compounds under study was also evaluated as antiproliferative agents. Guaiazulene and cis-nerolidol were able to more effectively arrest the cell cycle in the S-phase than trans,trans-farnesol and α-humulene, being the last almost inactive. The relative hepatoprotection effect of fifteen sesquiterpenic compounds, presenting different chemical structures and commonly found in plants and plant-derived foods and beverages, was assessed. Endogenous lipid peroxidation and induced lipid peroxidation with tert-butyl hydroperoxide were evaluated in liver homogenates from Wistar rats. With the exception of α-humulene, all the sesquiterpenic compounds under study (1 mM) were effective in reducing the malonaldehyde levels in both endogenous and induced lipid peroxidation up to 35% and 70%, respectively. The developed 3D-QSAR models, relating the hepatoprotection activity with molecular properties, showed good fit (R2LOO > 0.819) with good prediction power (Q2 > 0.950 and SDEP < 2%) for both models. A network of effects associated with structural and chemical features of sesquiterpenic compounds such as shape, branching, symmetry, and presence of electronegative fragments, can modulate the hepatoprotective activity observed for these compounds. In conclusion, this study allowed the development of rapid and in-depth methods for the assessment of varietal volatile compounds that might have a positive impact on sensorial and health attributes related to Vitis vinifera L. These approaches can be extended to the analysis of other related food matrices, including grapes and musts, among others. In addition, the results of in vitro assays open a perspective for the promising use of the sesquiterpenic compounds, with similar chemical structures such as those studied in the present work, as antioxidants, hepatoprotective and antiproliferative agents, which meets the current challenges related to diseases of modern civilization.