1 resultado para nickel-molybdenum sulfides

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atendendo à produção de epóxidos em larga escala e à sua importância como intermediários versáteis, muita atenção tem sido dada à epoxidação de olefinas. Destaca-se a implementação do processo industrial de epoxidação de propileno em fase líquida com tBHP, usando complexos de molibdénio como catalisadores homogéneos (Halcon-ARCO). Neste trabalho foram investigados novos complexos à base de molibdénio como catalisadores (ou precursores) para epoxidação de olefinas em fase líquida. Foi objecto de estudo a identificação das espécies activas e a estabilidade dos catalisadores através da sua separação no final das reacções catalíticas, caracterização e reutilização. Escolheu-se como reacção modelo a epoxidação do ciscicloocteno com tBHP (em decano, tBHPdec), a 55 ºC. Estendeu-se o estudo dos desempenhos catalíticos a diferentes substratos, oxidantes, solventes e métodos de aquecimento. A maior actividade catalítica foi observada para os complexos [MoO2Cl2L2] (L=ligando dialquilamida), mais estáveis e fáceis de manusear que [MoO2Cl2] e complexos análogos com L {THF, MeCN} (Cap. 2). A partir destes complexos podem-se formar in situ espécies activas intermediárias do tipo [(MoO2ClL2)2(μ-O)]. O complexo [MoO2(Lzol)], Lzol= ligando oxazolina quiral (Cap. 3), é um catalisador estável e versátil, activo para a epoxidação de diversas olefinas (selectividades elevadas para epóxidos, mas enantioselectividades baixas), desidrogenação oxidativa de álcoois e sulfoxidação de sulfuretos. O catalisador foi também reciclado eficientemente, usando um líquido iónico (LI). O complexo iónico [MoO2Cl{HC(3,5-Me2pz)3}]BF4 (Cap.4) converteu-se nos complexos activos [{MoO2(HC(3,5-Me2pz)3)}2(μ-O)](BF4)2, [Mo2O3(O2)2(μ-O){HC(3,5-Me2pz)3}] e [MoO3{HC(3,5-Me2pz)3}]; quando dissolvido num LI, o catalisador foi reciclado com sucesso. A presença de água e o meio oxidante influenciaram a formação destas espécies. Os complexos [CpMo(CO)3Me] (Cap.5) e [CpMo(CO)2(η3- C3H5)] (Cap.6) originaram espécies activas similares (baseado nos testes catalíticos e nos espectros FT-IR ATR dos sólidos recuperados). Para [Cp'Mo(CO)2(η3-C3H5)], a influência do Cp' na actividade catalítica sugeriu a formação de espécies activas com este ligando. A partir dos complexos [Mo(CO)4L] formaram-se in situ catalisadores estáveis, que podem ser heterogéneos: para L=2-[3(5)-pirazolil]piridina formou-se [Mo4O12L4]; para L=[3- (2-piridil)-1-pirazolil]acetato de etilo formou-se [Mo8O24L4] (Cap.7). O uso de microondas (MO) como método de aquecimento em vez de um banho de óleo (BO) resultou no aumento da velocidade da reacção catalítica, devido ao aquecimento mais rápido da mistura reaccional (Caps. 5 e 7). A utilização da solução aquosa de tBHP em vez de tBHPdec era preferível, porque excluía o decano do sistema reaccional e mantinham-se elevados os rendimentos em epóxido (Caps. 2 e 6); optimizou-se o desempenho catalítico removendo a água das misturas reaccionais (Caps. 4 e 7). O melhor resultado para a epoxidação de limoneno foi observado para [CpMoCO3Me]: 88% de rendimento em epóxido (2 h, 55 ºC, método de aquecimento MO).