8 resultados para kernel estimators

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objectivo principal da presente tese consiste no desenvolvimento de estimadores robustos do variograma com boas propriedades de eficiência. O variograma é um instrumento fundamental em Geoestatística, pois modela a estrutura de dependência do processo em estudo e influencia decisivamente a predição de novas observações. Os métodos tradicionais de estimação do variograma não são robustos, ou seja, são sensíveis a pequenos desvios das hipóteses do modelo. Essa questão é importante, pois as propriedades que motivam a aplicação de tais métodos, podem não ser válidas nas vizinhanças do modelo assumido. O presente trabalho começa por conter uma revisão dos principais conceitos em Geoestatística e da estimação tradicional do variograma. De seguida, resumem-se algumas noções fundamentais sobre robustez estatística. No seguimento, apresenta-se um novo método de estimação do variograma que se designou por estimador de múltiplos variogramas. O método consiste em quatro etapas, nas quais prevalecem, alternadamente, os critérios de robustez ou de eficiência. A partir da amostra inicial, são calculadas, de forma robusta, algumas estimativas pontuais do variograma; com base nessas estimativas pontuais, são estimados os parâmetros do modelo pelo método dos mínimos quadrados; as duas fases anteriores são repetidas, criando um conjunto de múltiplas estimativas da função variograma; por fim, a estimativa final do variograma é definida pela mediana das estimativas obtidas anteriormente. Assim, é possível obter um estimador que tem boas propriedades de robustez e boa eficiência em processos Gaussianos. A investigação desenvolvida revelou que, quando se usam estimativas discretas na primeira fase da estimação do variograma, existem situações onde a identificabilidade dos parâmetros não está assegurada. Para os modelos de variograma mais comuns, foi possível estabelecer condições, pouco restritivas, que garantem a unicidade de solução na estimação do variograma. A estimação do variograma supõe sempre a estacionaridade da média do processo. Como é importante que existam procedimentos objectivos para avaliar tal condição, neste trabalho sugere-se um teste para validar essa hipótese. A estatística do teste é um estimador-MM, cuja distribuição é desconhecida nas condições de dependência assumidas. Tendo em vista a sua aproximação, apresenta-se uma versão do método bootstrap adequada ao estudo de observações dependentes de processos espaciais. Finalmente, o estimador de múltiplos variogramas é avaliado em termos da sua aplicação prática. O trabalho contém um estudo de simulação que confirma as propriedades estabelecidas. Em todos os casos analisados, o estimador de múltiplos variogramas produziu melhores resultados do que as alternativas usuais, tanto para a distribuição assumida, como para distribuições contaminadas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os Modelos de Equações Simultâneas (SEM) são modelos estatísticos com muita tradição em estudos de Econometria, uma vez que permitem representar e estudar uma vasta gama de processos económicos. Os estimadores mais usados em SEM resultam da aplicação do Método dos Mínimos Quadrados ou do Método da Máxima Verosimilhança, os quais não são robustos. Em Maronna e Yohai (1997), os autores propõem formas de “robustificar” esses estimadores. Um outro método de estimação com interesse nestes modelos é o Método dos Momentos Generalizado (GMM), o qual também conduz a estimadores não robustos. Estimadores que sofrem de falta de robustez são muito inconvenientes uma vez que podem conduzir a resultados enganadores quando são violadas as hipóteses subjacentes ao modelo assumido. Os estimadores robustos são de grande valor, em particular quando os modelos em estudo são complexos, como é o caso dos SEM. O principal objectivo desta investigação foi o de procurar tais estimadores tendo-se construído um estimador robusto a que se deu o nome de GMMOGK. Trata-se de uma versão robusta do estimador GMM. Para avaliar o desempenho do novo estimador foi feito um adequado estudo de simulação e foi também feita a aplicação do estimador a um conjunto de dados reais. O estimador robusto tem um bom desempenho nos modelos heterocedásticos considerados e, nessas condições, comporta-se melhor do que os estimadores não robustos usados no estudo. Contudo, quando a análise é feita em cada equação separadamente, a especificidade de cada equação individual e a estrutura de dependência do sistema são dois aspectos que influenciam o desempenho do estimador, tal como acontece com os estimadores usuais. Para enquadrar a investigação, o texto inclui uma revisão de aspectos essenciais dos SEM, o seu papel em Econometria, os principais métodos de estimação, com particular ênfase no GMM, e uma curta introdução à estimação robusta.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabalho focou-se no estudo de técnicas de sub-espaço tendo em vista as aplicações seguintes: eliminação de ruído em séries temporais e extracção de características para problemas de classificação supervisionada. Foram estudadas as vertentes lineares e não-lineares das referidas técnicas tendo como ponto de partida os algoritmos SSA e KPCA. No trabalho apresentam-se propostas para optimizar os algoritmos, bem como uma descrição dos mesmos numa abordagem diferente daquela que é feita na literatura. Em qualquer das vertentes, linear ou não-linear, os métodos são apresentados utilizando uma formulação algébrica consistente. O modelo de subespaço é obtido calculando a decomposição em valores e vectores próprios das matrizes de kernel ou de correlação/covariância calculadas com um conjunto de dados multidimensional. A complexidade das técnicas não lineares de subespaço é discutida, nomeadamente, o problema da pre-imagem e a decomposição em valores e vectores próprios de matrizes de dimensão elevada. Diferentes algoritmos de préimagem são apresentados bem como propostas alternativas para a sua optimização. A decomposição em vectores próprios da matriz de kernel baseada em aproximações low-rank da matriz conduz a um algoritmo mais eficiente- o Greedy KPCA. Os algoritmos são aplicados a sinais artificiais de modo a estudar a influência dos vários parâmetros na sua performance. Para além disso, a exploração destas técnicas é extendida à eliminação de artefactos em séries temporais biomédicas univariáveis, nomeadamente, sinais EEG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nesta tese, consideram-se operadores integrais singulares com a acção extra de um operador de deslocacamento de Carleman e com coeficientes em diferentes classes de funções essencialmente limitadas. Nomeadamente, funções contínuas por troços, funções quase-periódicas e funções possuíndo factorização generalizada. Nos casos dos operadores integrais singulares com deslocamento dado pelo operador de reflexão ou pelo operador de salto no círculo unitário complexo, obtêm-se critérios para a propriedade de Fredholm. Para os coeficientes contínuos, uma fórmula do índice de Fredholm é apresentada. Estes resultados são consequência das relações de equivalência explícitas entre aqueles operadores e alguns operadores adicionais, tais como o operador integral singular, operadores de Toeplitz e operadores de Toeplitz mais Hankel. Além disso, as relações de equivalência permitem-nos obter um critério de invertibilidade e fórmulas para os inversos laterais dos operadores iniciais com coeficientes factorizáveis. Adicionalmente, aplicamos técnicas de análise numérica, tais como métodos de colocação de polinómios, para o estudo da dimensão do núcleo dos dois tipos de operadores integrais singulares com coeficientes contínuos por troços. Esta abordagem permite também a computação do inverso no sentido Moore-Penrose dos operadores principais. Para operadores integrais singulares com operadores de deslocamento do tipo Carleman preservando a orientação e com funções contínuas como coeficientes, são obtidos limites superiores da dimensão do núcleo. Tal é implementado utilizando algumas estimativas e com a ajuda de relações (explícitas) de equivalência entre operadores. Focamos ainda a nossa atenção na resolução e nas soluções de uma classe de equações integrais singulares com deslocamento que não pode ser reduzida a um problema de valor de fronteira binomial. De forma a atingir os objectivos propostos, foram utilizadas projecções complementares e identidades entre operadores. Desta forma, as equações em estudo são associadas a sistemas de equações integrais singulares. Estes sistemas são depois analisados utilizando um problema de valor de fronteira de Riemann. Este procedimento tem como consequência a construção das soluções das equações iniciais a partir das soluções de problemas de valor de fronteira de Riemann. Motivados por uma grande diversidade de aplicações, estendemos a definição de operador integral de Cauchy para espaços de Lebesgue sobre grupos topológicos. Assim, são investigadas as condições de invertibilidade dos operadores integrais neste contexto.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis we consider Wiener-Hopf-Hankel operators with Fourier symbols in the class of almost periodic, semi-almost periodic and piecewise almost periodic functions. In the first place, we consider Wiener-Hopf-Hankel operators acting between L2 Lebesgue spaces with possibly different Fourier matrix symbols in the Wiener-Hopf and in the Hankel operators. In the second place, we consider these operators with equal Fourier symbols and acting between weighted Lebesgue spaces Lp(R;w), where 1 < p < 1 and w belongs to a subclass of Muckenhoupt weights. In addition, singular integral operators with Carleman shift and almost periodic coefficients are also object of study. The main purpose of this thesis is to obtain regularity properties characterizations of those classes of operators. By regularity properties we mean those that depend on the kernel and cokernel of the operator. The main techniques used are the equivalence relations between operators and the factorization theory. An invertibility characterization for the Wiener-Hopf-Hankel operators with symbols belonging to the Wiener subclass of almost periodic functions APW is obtained, assuming that a particular matrix function admits a numerical range bounded away from zero and based on the values of a certain mean motion. For Wiener-Hopf-Hankel operators acting between L2-spaces and with possibly different AP symbols, criteria for the semi-Fredholm property and for one-sided and both-sided invertibility are obtained and the inverses for all possible cases are exhibited. For such results, a new type of AP factorization is introduced. Singular integral operators with Carleman shift and scalar almost periodic coefficients are also studied. Considering an auxiliar and simpler operator, and using appropriate factorizations, the dimensions of the kernels and cokernels of those operators are obtained. For Wiener-Hopf-Hankel operators with (possibly different) SAP and PAP matrix symbols and acting between L2-spaces, criteria for the Fredholm property are presented as well as the sum of the Fredholm indices of the Wiener-Hopf plus Hankel and Wiener-Hopf minus Hankel operators. By studying dependencies between different matrix Fourier symbols of Wiener-Hopf plus Hankel operators acting between L2-spaces, results about the kernel and cokernel of those operators are derived. For Wiener-Hopf-Hankel operators acting between weighted Lebesgue spaces, Lp(R;w), a study is made considering equal scalar Fourier symbols in the Wiener-Hopf and in the Hankel operators and belonging to the classes of APp;w, SAPp;w and PAPp;w. It is obtained an invertibility characterization for Wiener-Hopf plus Hankel operators with APp;w symbols. In the cases for which the Fourier symbols of the operators belong to SAPp;w and PAPp;w, it is obtained semi-Fredholm criteria for Wiener-Hopf-Hankel operators as well as formulas for the Fredholm indices of those operators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As técnicas estatísticas são fundamentais em ciência e a análise de regressão linear é, quiçá, uma das metodologias mais usadas. É bem conhecido da literatura que, sob determinadas condições, a regressão linear é uma ferramenta estatística poderosíssima. Infelizmente, na prática, algumas dessas condições raramente são satisfeitas e os modelos de regressão tornam-se mal-postos, inviabilizando, assim, a aplicação dos tradicionais métodos de estimação. Este trabalho apresenta algumas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, em particular na estimação de modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. A investigação é desenvolvida em três vertentes, nomeadamente na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, na estimação do parâmetro ridge em regressão ridge e, por último, em novos desenvolvimentos na estimação com máxima entropia. Na estimação de eficiência técnica com fronteiras de produção condicionadas a estados contingentes, o trabalho desenvolvido evidencia um melhor desempenho dos estimadores de máxima entropia em relação ao estimador de máxima verosimilhança. Este bom desempenho é notório em modelos com poucas observações por estado e em modelos com um grande número de estados, os quais são comummente afetados por colinearidade. Espera-se que a utilização de estimadores de máxima entropia contribua para o tão desejado aumento de trabalho empírico com estas fronteiras de produção. Em regressão ridge o maior desafio é a estimação do parâmetro ridge. Embora existam inúmeros procedimentos disponíveis na literatura, a verdade é que não existe nenhum que supere todos os outros. Neste trabalho é proposto um novo estimador do parâmetro ridge, que combina a análise do traço ridge e a estimação com máxima entropia. Os resultados obtidos nos estudos de simulação sugerem que este novo estimador é um dos melhores procedimentos existentes na literatura para a estimação do parâmetro ridge. O estimador de máxima entropia de Leuven é baseado no método dos mínimos quadrados, na entropia de Shannon e em conceitos da eletrodinâmica quântica. Este estimador suplanta a principal crítica apontada ao estimador de máxima entropia generalizada, uma vez que prescinde dos suportes para os parâmetros e erros do modelo de regressão. Neste trabalho são apresentadas novas contribuições para a teoria de máxima entropia na estimação de modelos mal-postos, tendo por base o estimador de máxima entropia de Leuven, a teoria da informação e a regressão robusta. Os estimadores desenvolvidos revelam um bom desempenho em modelos de regressão linear com pequenas amostras, afetados por colinearidade e outliers. Por último, são apresentados alguns códigos computacionais para estimação com máxima entropia, contribuindo, deste modo, para um aumento dos escassos recursos computacionais atualmente disponíveis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estabelecemos uma condição suficiente para a preservação dos produtos finitos, pelo reflector de uma variedade de álgebras universais numa subvariedade, que é, também, condição necessária se a subvariedade for idempotente. Esta condição é estabelecida, seguidamente, num contexto mais geral e caracteriza reflexões para as quais a propriedade de ser semi-exacta à esquerda e a propriedade, mais forte, de ter unidades estáveis, coincidem. Prova-se que reflexões simples e semi-exactas à esquerda coincidem, no contexto das variedades de álgebras universais e caracterizam-se as classes do sistema de factorização derivado da reflexão. Estabelecem-se resultados que ajudam a caracterizar morfismos de cobertura e verticais-estáveis em álgebras universais e no contexto mais geral já referido. Caracterizam-se as classes de morfismos separáveis, puramente inseparáveis e normais. O estudo dos morfismos de descida de Galois conduz a condições suficientes para que o seu par kernel seja preservado pelo reflector.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work investigates new channel estimation schemes for the forthcoming and future generation of cellular systems for which cooperative techniques are regarded. The studied cooperative systems are designed to re-transmit the received information to the user terminal via the relay nodes, in order to make use of benefits such as high throughput, fairness in access and extra coverage. The cooperative scenarios rely on OFDM-based systems employing classical and pilot-based channel estimators, which were originally designed to pointto-point links. The analytical studies consider two relaying protocols, namely, the Amplifyand-Forward and the Equalise-and-Forward, both for the downlink case. The relaying channels statistics show that such channels entail specific characteristics that comply to a proper filter and equalisation designs. Therefore, adjustments in the estimation process are needed in order to obtain the relay channel estimates, refine these initial estimates via iterative processing and obtain others system parameters that are required in the equalisation. The system performance is evaluated considering standardised specifications and the International Telecommunication Union multipath channel models.