3 resultados para hybrid cell lines

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microglial cells are the resident immune cells of central nervous system (CNS) and the major players in neuroinflammation. These cells are also responsible for surveilling the neuronal microenvironment, and upon injury to the CNS they change their morphology and molecular profile and become activated. Activated status is associated with microglia proliferation, migration to injury foci, increased phagocytic capacity, production and release of reactive oxygen species (ROS), cytokines (pro- or anti-inflammatory) and reactive nitrogen species. Microglia activation is crucial for tissue repair in the healthy brain. However, their chronic activation or deregulation might contribute for the pathophysiology of neurodegenerative diseases. A better understanding of the mechanisms underlying microglial cell activation is important for defining targets and develop appropriate therapeutic strategies to control the chronic activation of microglia. It has been observed an increase in profilin (Pfn) mRNA in microglial cells in the rat hippocampus after unilateral ablation of its major extrinsic input, the entorhinal cortex. This observation suggested that Pfn might be involved in microglia activation. Pfn1 is an actin binding protein that controls assembly and disassembly of actin filaments and is important for several cellular processes, including, motility, cell proliferation and survival. Here, we studied the role of Pfn1 in microglial cell function. For that, we used primary cortical microglial cell cultures and microglial cell lines in which we knocked down Pfn1 expression and assessed the activation status of microglia, based on classical activation markers, such as: phagocytosis, glutamate release, reactive oxygen species (ROS), pro- and anti-inflammatory cytokines. We demonstrated that Pfn1 (i) is more active in hypoxia-challenged microglia, (ii) modulates microglia pro- and anti-inflammatory signatures and (iii) plays a critical role in ROS generation in microglia. Altogether, we conclude that Pfn1 is a key protein for microglia homeostasis, playing an essential role in their activation, regardless the polarization into a pro or anti-inflammatory signature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Head and Neck Cancers (HNC) are a group of tumours located in the upper aero-digestive tract. Head and Neck Squamous Cell Carcinoma (HNSCC) represent about 90% of all HNC cases. It has been considered the sixth most malignant tumour worldwide and, despite clinical and technological advances, the five-year survival rate has not improved much in the last years. Nowadays, HNSCC is well established as a heterogeneous disease and that its development is due to accumulation of genetic events. Apart from the majority of the patients being diagnosed in an advanced stage, HNSCC is also a disease with poor therapeutic outcome. One of the therapeutic approaches is radiotherapy. However, this approach has different drawbacks like the radioresistance acquired by some tumour cells, leading to a worse prognosis. A major knowledge in radiation biology is imperative to improve this type of treatment and avoid late toxicities, maintaining patient quality of life in the subsequent years after treatment. Then, identification of genetic markers associated to radiotherapy response in patients and possible alterations in cells after radiotherapy are essential steps towards an improved diagnosis, higher survival rate and a better life quality. Not much is known about the radiation effects on cells, so, the principal aim of this study was to contribute to a more extensive knowledge about radiation treatment in HNSCC. For this, two commercial cell lines, HSC-3 and BICR-10, were used and characterized resorting to karyotyping, aCGH and MS-MLPA. These cell lines were submitted to different doses of irradiation and the resulting genetic and methylation alterations were evaluated. Our results showed a great difference in radiation response between the two cell lines, allowing the conclusion that HSC-3 was much more radiosensitive than BICR-10. Bearing this in mind, analysis of cell death, cell cycle and DNA damages was performed to try to elucidate the motifs behind this difference. The characterization of both cell lines allowed the confirmation that HSC-3 was derived from a metastatic tumour and the hypothesis that BICR-10 was derived from a dysplasia. Furthermore, this pilot study enabled the suggestion of some genetic and epigenetic alterations that cells suffer after radiation treatment. Additionally, it also allowed the association of some genetic characteristics that could be related to the differences in radiation response observable in this two cell lines. Taken together all of our results contribute to a better understanding of radiation effects on HNSCC allowing one further step towards the prediction of patients’ outcome, better choice of treatment approaches and ultimately a better quality of life.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fertilization is a multistep and complex process culminating in the merge of gamete membranes, cytoplasmic unity and fusion of genome. CD81 is a tetraspanin protein that participates in sperm-oocyte interaction, being present at the oocyte surface. CD81 has also been implicated in other biological processes, however its specific function and molecular mechanisms of action remain to be elucidated. The interaction between CD81 and its binding partner proteins may underlie the CD81 involvement in a variety of cellular processes and modulate CD81/interactors specific functions. Interestingly, in a Yeast two Hybrid system previously performed in our lab, CD81 has emerged as a putative interactor of the Amyloid Precursor Protein (APP). In the work here described, bioinformatics analyses of CD81 interacting proteins were performed and the retrieved information used to construct a protein-protein interaction network, as well as to perform Gene Ontology enrichment analyses. CD81 expression was further evaluated in CHO, GC-1 and SH-SY5Y cell lines, and in human sperm cells. Additionally, its subcellular localization was analyzed in sperm cells and in the neuronal-like SH-SY5Y cell line. Subsequently, coimmunoprecipitation assays were performed in CHO and SH-SY5Y cells to attempt to prove the physical interaction between CD81 and APP. A functional interaction between these two proteins was accessed thought the analyses of the effects of CD81 overexpression on APP levels. A co-localization analysis of CD81 and some interactors proteins retrieved from the bioinformatics analyses, such as APP, AKT1 and cytoskeleton-related proteins, was also performed in sperm cells and in SH-SY5Y cells. The effects of CD81 in cytoskeleton remodeling was evaluated in SH-SY5Y cells through monitoring the effects of CD81 overexpression in actin and tubulin levels, and analyzing the colocalization between overexpressed CD81 and F-actin. Our results showed that CD81 is expressed in all cell lines tested, and also provided the first evidence of the presence of CD81 in human sperm cells. CD81 immunoreactivity was predominantly detected in the sperm head, including the acrosome membrane, and in the midpiece, where it co-localized with APP, as well as in the post-acrosomal region. Furthermore, CD81 co-localizes with APP in the plasma membrane and in cellular projections in SH-SY5Y cells, where CD81 overexpression has an influence on APP levels, also visible in CHO cells. The analysis of CD81 interacting proteins such as AKT1 and cytoskeletonrelated proteins showed that CD81 is involved in a variety of pathways that may underlie cytoskeleton remodeling events, related to processes such as sperm motility, cell migration and neuritogenesis. These results deepen our understanding on the functions of CD81 and some of its interactors in sperm and neuronal cells.