3 resultados para homofermentative bacteria

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os estuários são ecossistemas complexos, onde os processos físicos, químicos e biológicos estão intimamente ligados. A dinâmica bacteriana num estuário reflete a interação e a elevada variação temporal e espacial desses processos. Este trabalho teve como objetivo elucidar as interações entre os processos físicos, fotoquímicos e microbiológicos no sistema estuarino da Ria de Aveiro (Portugal). Para tal, foi realizada uma abordagem inicial no campo, durante a qual as comunidades bacterianas na coluna de água foram caracterizadas em termos de abundância e atividade ao longo de 2 anos. O estudo foi realizado em dois locais distintos, escolhidos por tipificarem as características marinhas e salobras do estuário. Estes locais possuem diferentes hidrodinâmicas, influências fluviais e, quantidade e composição de matéria orgânica. Numa perspectiva mecanicista, foram realizadas simulações laboratoriais no sentido de elucidar a resposta das bactérias à matéria orgânica foto-transformada. As comunidades bacterianas no estuário adaptam-se a diferentes regimes de água doce, desenvolvendo padrões de abundância e atividade distintos nas zonas marinha e salobra. Os elevados caudais dos rios induzem estratificação vertical na zona marinha, promovendo o fluxo de fitoplâncton do mar para o estuário, do bacterioplâncton do estuário para o mar, e estimulam a importação de bactérias aderentes a partículas na zona salobra. O transporte advectivo e os processos de ressuspensão contribuem para aumentar 3 vezes o número de bactérias aderentes a partículas durante os períodos de intensas descargas fluviais. Adicionalmente, a atividade bacteriana no estuário é controlada pela concentração de azoto inerente à variações de água doce. O fornecimento de azoto em associação com a fonte dos substratos bacterianos induzem alterações significativas na produtividade. O padrão de variação vertical de comunidades bacterianas foi distinto nas duas zonas do estuário. Na zona marinha, as bactérias na microcamada superficial (SML) apresentaram taxas de hidrólise mais elevadas, mas menores taxas de incorporação de monómeros e produção de biomassa que na água subjacente (UW), enquanto na zona salobra, as taxas de hidrólise e incorporação foram similares nos dois compartimentos, mas a produtividade foi significativamente mais elevada na SML. Apesar da abundância bacteriana ter sido semelhante na SML e UW, a fração de células aderentes a partículas foi significativamente maior na SML (2-3 vezes), em ambas as zonas do estuário. A integração dos resultados microbiológicos com as variáveis ambientais e hidrológicos mostraram que fortes correntes na zona marinha promovem a mistura vertical, inibindo o estabelecimento de uma comunidade bacteriana na SML distinta da UW. Em contraste, na zona de água salobra, a menor velocidades das correntes fornece as condições adequadas ao aumento da atividade bacteriana na SML. Características específicas do local, tais como a hidrodinâmica e as fontes e composição da matéria orgânica, conduzem também a diferentes graus de enriquecimento superficial de matéria orgânica e inorgânica, influenciando a sua transformação. Em geral, o ambiente da SML estuarina favorece a hidrólise de polímeros, mas inibe a utilização de monómeros, comparativamente com água subjacente. No entanto, as diferenças entre as duas comunidades tendem a atenuar-se com o aumento da atividade heterotrófica na zona salobra. A matéria orgânica dissolvida cromófora (CDOM) das duas zonas do estuário possui diferentes características espectrais, com maior aromaticidade e peso molecular médio (HMW) na zona de água salobra, em comparação com a zona marinha. Nesta zona, a abundância bacteriana correlacionou-se com a350 e a254, sugerindo uma contribuição indireta das bactéria para HMW CDOM. A irradiação do DOM resultou numa diminuição dos valores de a254 e a350, e, em um aumento do declive S275-295 e dos rácios E2:E3 (a250/a365) e SR. No entanto, a extensão de transformações foto-induzidas e as respostas microbianas são dependentes das características iniciais CDOM, inferidas a partir das suas propriedades ópticas. A dinâmica estuarina influencia claramente as atividades heterotróficas e a distribuição dos microorganismos na coluna de água. A entrada de água doce influencia a dinâmica e os principais reguladores das comunidades bacterianas no estuário. Os processos fotoquímicos e microbianos produzem alterações nas propriedades ópticas da CDOM e a combinação desses processos determina o resultado global e o destino da CDOM nos sistemas estuarinos com influência na produtividade nas áreas costeiras adjacente.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability of microorganisms to use oil hydrocarbons as a source of carbon and energy is crucial for environmental oil detoxification. However, there is still a lack of knowledge on fundamental aspects of this process on specific habitats and under different climate scenarios. In the first phase of this work, the culturable fraction of the oil hydrocarbon (OH) degrading bacteria from the sea surface microlayer (SML) of the estuarine system Ria de Aveiro was characterized. In the second phase, the impact of oil contamination on the active bacterial community was studied under climate change scenarios. Pseudomonas emerged as the prevailing genera among OH degrading bacteria in the SML. Moreover, culture-independent methods revealed that the relative abundance and diversity of Gammaproteobacteria, in which Pseudomonas is included, varies along an estuarine gradient of contamination. In order to access the impact of oil contamination on microbial communities under climate change scenarios, an experimental life support system for microcosm experiments (ELLS) was developed and validated for simulation of climate change effects on microbial communities. With the ELSS it is possible to simulate, in controlled conditions, fundamental parameters of the dynamics of coastal and estuarine systems while maintaining community structure in terms of the abundance of the most relevant members of the indigenous bacterial community. A microcosm experiment in which the independent and combined impact of ultraviolet radiation, ocean acidification and oil contamination on microbial communities was conducted. The impact on bacterial communities was accessed with a 16S RNA (cDNA) based barcode pyrosequencing approach. There was a drastic decrease of Desulfobacterales relative abundance after oil contamination under the reduced pH value estimated for 2100, when compared to present values. Since members of this order are known OH degraders, such a significant decrease may have consequences on OH detoxification of contaminated environments under the pH levels of the ocean expected for the future. Metagenome predictions based on the 16S RNA database indicated that several degradation pathways of OH could be affected under oil contamination and reduced water pH. Taken together, the results from this work bring new information on the dynamics of OH degrading bacteria in coastal and estuarine environments under present and future climate scenarios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photodynamic inactivation (PDI) is defined as the process of cell destruction by oxidative stress resulting from the interaction between light and a photosensitizer (PS), in the presence of molecular oxygen. PDI of bacteria has been extensively studied in recent years, proving to be a promising alternative to conventional antimicrobial agents for the treatment of superficial and localized infections. Moreover, the applicability of PDI goes far beyond the clinical field, as its potential use in water disinfection, using PS immobilized on solid supports, is currently under study. The aim of the first part of this work was to study the oxidative modifications in phospholipids, nucleic acids and proteins of Escherichia coli and Staphylococcus warneri, subjected to photodynamic treatment with cationic porphyrins. The aims of the second part of the work were to study the efficiency of PDI in aquaculture water and the influence of different physicalchemical parameters in this process, using the Gram-negative bioluminescent bacterium Vibrio fischeri, and to evaluate the possibility of recycling cationic PS immobilized on magnetic nanoparticles. To study the oxidative changes in membrane phospholipids, a lipidomic approach has been used, combining chromatographic techniques and mass spectrometry. The FOX2 assay was used to determine the concentration of lipid hydroperoxides generated after treatment. The oxidative modifications in the proteins were analyzed by one-dimensional polyacrylamide gel electrophoresis (SDS-PAGE). Changes in the intracellular nucleic acids were analyzed by agarose gel electrophoresis and the concentration of doublestranded DNA was determined by fluorimetry. The oxidative changes of bacterial PDI at the molecular level were analyzed by infrared spectroscopy. In laboratory tests, bacteria (108 CFU mL-1) were irradiated with white light (4.0 mW cm-2) after incubation with the PS (Tri-Py+-Me-PF or Tetra-Py+-Me) at concentrations of 0.5 and 5.0 μM for S. warneri and E. coli, respectively. Bacteria were irradiated with different light doses (up to 9.6 J cm-2 for S. warneri and up to 64.8 J cm-2 for E. coli) and the changes were evaluated throughout the irradiation time. In the study of phospholipids, only the porphyrin Tri-Py+-Me-PF and a light dose of 64.8 J cm-2 were tested. The efficiency of PDI in aquaculture has been evaluated in two different conditions: in buffer solution, varying temperature, pH, salinity and oxygen concentration, and in aquaculture water samples, to reproduce the conditions of PDI in situ. The kinetics of the process was determined in realtime during the experiments by measuring the bioluminescence of V. fischeri (107 CFU mL-1, corresponding to a level of bioluminescence of 105 relative light units). A concentration of 5.0 μM of Tri-Py+-Me-PF was used in the experiments with buffer solution, and 10 to 50 μM in the experiments with aquaculture water. Artificial white light (4.0 mW cm-2) and solar irradiation (40 mW cm-2) were used as light sources.