2 resultados para hierarchical porous media

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

O presente trabalho tem como principal objectivo o estudo e a interpretação dos mecanismos de transferência de calor e massa no interior de um meio poroso húmido actuando como barreira térmica de protecção em condições de incêndio, visando, sobretudo, melhorar o desempenho destes sistemas. A barreira térmica estudada é constituída por camadas de fibra de vidro, cuja face exposta à chama é protegida por uma folha de alumínio perfurada. A realização deste estudo envolveu a concepção, realização e operação de uma montagem experimental, com a qual se obteve a evolução temporal da temperatura e da taxa de evaporação de água no interior de uma amostra da barreira térmica, submetida à acção directa de uma chama. A análise do processo de protecção foi complementada com resultados obtidos por simulação numérica do processo, designadamente a evolução das propriedades térmicas, que determinam os mecanismos de transferência de calor e massa no interior da barreira. Para esse efeito foi desenvolvido um modelo matemático de simulação do processo de protecção para as barreiras em estudo, que permitiu obter resultados que acompanham bem as evoluções verificadas nos ensaios experimentais. A barreira térmica estudada mostrou claramente possuir um bom desempenho no processo de protecção, face às barreiras térmicas secas. Com a realização deste estudo identificaram-se e quantificaram-se os mecanismos de transferência de calor e massa dominantes nas diversas fases do processo de protecção, o que permitiu extrair conclusões valiosas quanto às características dos meios porosos que contribuem para o seu bom desempenho como barreiras térmicas húmidas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bioactive glasses and glass–ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaOMgOP2O5SiO2F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) – fluorapatite (9CaO•3P2O5•CaF2) – wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside – fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium content has been tested successfully both in vivo and in preliminary clinical trials. But this work needs to be continued and deepened. The dispersing of fine glass particles in aqueous media or in other suitable solvents, and the study of the most important factors that affect the rheology of the suspensions are essential steps to enable the manufacture of porous structures with tailor-made hierarchical pores by advanced processing techniques such as Robocasting.