4 resultados para digestive enzymes,

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os mecanismos de biogénese, distribuição apical e secreção regulada de enzimas digestivas dos grânulos de zimogénio são, atualmente, pouco conhecidos. De modo a esclarecer e descrever estes processos de elevada importância biológica e clínica, é necessária uma melhor compreensão dos componentes da membrana granular e as funções e interações destes. Neste trabalho, através de uma abordagem proteómica, foi possível identificar novas proteínas granulares previamente associadas ao transporte vesicular sináptico. Para estudar as funções destas proteínas na génese e secreção de grânulos, foram realizados estudos de sobre-expressão, assim como estudos bioquímicos (1D, 2D, and LC-MS/MS) e morfológicos, utilizando céluas de mamífero. Entre as proteínas descobertas, cinco foram selecionadas e analisadas: RMCP-1, Piccolo, Synaptojanin-1, APP e ZG16p. Destas proteínas, confirmou-se a presença da RMCP-1 e APP nos grânulos de zimogénio. Interessantamente, o lectin ZG16p da secreção pâncreatico, encontra-se expressa no cérebro de rato, estando localizada nos terminais pós-sinápticos e em grânulos de RNA, indicando uma possível função desta proteína na formação das vesículas sinápticas. Finalmente, demonstrei que a formação de grânulos de zimogénio pode ser modulada, no modelo de células pancreáticas AR42J, pelas condições de cultura. Em contraste com as proteínas de carga neuroendocrinas, a sobreexpressão de proteínas de carga ou da membrana dos grânulos de zimogénio não foi suficiente para induzir a formação de grânulos ou de estruturas granulares em células constitutivamente secretoras, indicando diferenças na biogénese de grânulos neuroendócrinos e exócrinos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the biology of offshore species is hardened by the difficulties of sampling in the deep-sea environment. Additionally, due to the vastness of the open ocean, knowledge of early life histories of pelagic larvae is still relatively scarce. In decapod species with bentho-pelagic lifestyle, the transition from life in the seafloor to the water column not only is associated with drastic morphological metamorphosis, but also with changes in behavior and feeding ecology. The purpose of the present thesis was to investigate physiological, biochemical and behavioral adaptation occurring during early development of such species. The Norway lobster, Nephrops norvegicus, and the crab Monodaeus couchi were used as a model as these two species are encountered off the NE Atlantic shelf at depth greater than 300 m. Chapter 1 introduces the challenges faced by both adult and larvae inhabiting such remote habitats, including the effect of food availability on development and oceanographic processes on dispersal and recruitment. The thesis follows early life histories, starting with within-brood variability in the fatty acid (FA) profile displayed by developing N. norvegicus embryos. There were no differences in the FA composition of embryos sampled from both sides of the brooding chamber in most females. However, all females exhibited significant differences in the FA profiles of embryos sampled from different pleopods. Potential causes for the variations recorded may be differential female investment during oocyte production or shifts in FA catabolism during the incubation period promoted by embryo’s location within the brooding chamber. Next, feeding rates and digestive enzymes activity of the early stage larvae was investigated in N. norvegicus. Both stages were able to maximize food intake when larvae were scarce and showed increased feeding rate following periods of starvation. Amylase activity indicated that carbohydrates are not the primary energy reserve and that feeding may be required soon after hatching to trigger amylase activity. Protease activity indicated that protein reserves are catabolized under starvation. These results indicate that larvae may maximize prey ingestion in the presence of plankton patches with higher food abundance and minimize the deleterious effects induced by previous periods of intermittent starvation or unsuitable prey densities/types. Additionally, changes in enzymatic activity may allow newly hatched N. norvegicus larvae to metabolize protein reserves to overcome short-term starvation. Vertical migration behavior and the influence of oceanographic properties were studied next. All zoeal stages of M. couchi displayed reverse diel vertical migration. Abundance of early stages was correlated with chlorophyll a levels. An ontogenic shift in vertical distribution explained the results; earlier zoeal stages remain in the food-rich upper water column while later stages migrate to the bottom for settlement. This vertical migration behavior is likely to affect horizontal distribution of larvae. Indeed, global current patterns will result in low inter-annual variations in decapod larvae recruitment, but short term variations such as upwelling events will cause deviation from the expected dispersal pattern. Throughout development, from the embryo to metamorphosis into benthic juvenile, offshore decapods face many challenges. For the developing individual survivorship will depend heavily on food availability but also on the reserves passed on by the mother. Even though vertical migration behavior can allow the larvae to take advantage of depth varying currents for transport, the effect of general circulation pattern will superimpose local current and influence feeding conditions and affect dispersal and recruitment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms of secretory granule biogenesis and regulated secretion of digestive enzymes in pancreatic acinar cells are still not well understood. To shed light on these processes, which are of biological and clinical importance (e.g., pancreatitis), a better molecular understanding of the components of the granule membrane, their functions and interactions is required. The application of proteomics has largely contributed to the identification of novel zymogen granule (ZG) proteins but was not yet accompanied by a better characterization of their functions. In this study we aimed at a) isolation and identification of novel membrane-associated ZG proteins; b) characterization of the biochemical properties and function of the secretory lectin ZG16p, a membrane-associated protein; c) exploring the potential of ZG16p as a new tool to label the endolysosomal compartment. First, we have performed a suborganellar proteomics approach by combining protein analysis by 2D-PAGE and identification by mass spectrometry, which has led to the identification of novel peripheral ZGM proteins with proteoglycan-binding properties (e.g., chymase, PpiB). Then, we have unveiled new molecular properties and (multiple) functions of the secretory lectin ZG16p. ZG16p is a unique mammalian lectin with glycan and proteoglycan binding properties. Here, I revealed for the first time that ZG16p is highly protease resistant by developing an enterokinase-digestion assay. In addition I revealed that ZG16p binds to a high molecular weight complex at the ZGM (which is also protease resistant) and forms highly stable dimers. In light of these findings I suggest that ZG16p is a key component of a predicted submembranous granule matrix attached to the luminal side of the ZGM that fulfils important functions during sorting and packaging of zymogens. ZG16p, may act as a linker between the matrix and aggregated zymogens due to dimer formation. Furthermore, ZG16p protease resistance might be of higher importance after secretion since it is known that ZG16p binds to pathogenic fungi in the gut. I have further investigated the role of ZG16p binding motifs in its targeting to ZG in AR42J cells, a pancreatic model system. Point mutations of the glycan and the proteoglycan binding motifs did not inhibit the targeting of ZG16p to ZG in AR42J cells. I have also demonstrated that when ZG16p is present in the cytoplasm it interacts with and modulates the endo-lysosomal compartment. Since it is known that impaired autophagy due to lysosomal malfunction is involved in the course of pancreatitis, a potential role of ZG16p in pancreatitis is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidences indicate that tRNA modifications and tRNA modifying enzymes may play important roles in complex human diseases such as cancer, neurological disorders and mitochondrial-linked diseases. We postulate that expression deregulation of tRNA modifying enzymes affects the level of tRNA modifications and, consequently, their function and the translation efficiency of their tRNA corresponding codons. Due to the degeneracy of the genetic code, most amino acids are encoded by two to six synonymous codons. This degeneracy and the biased usage of synonymous codons cause alterations that can span from protein folding to enhanced translation efficiency of a select gene group. In this work, we focused on cancer and performed a meta-analysis study to compare microarray gene expression profiles, reported by previous studies and evaluate the codon usage of different types of cancer where tRNA modifying enzymes were found de-regulated. A total of 36 different tRNA modifying enzymes were found de-regulated in most cancer datasets analyzed. The codon usage analysis revealed a preference for codons ending in AU for the up-regulated genes, while the down-regulated genes show a preference for GC ending codons. Furthermore, a PCA biplot analysis showed this same tendency. We also analyzed the codon usage of the datasets where the CTU2 tRNA modifying enzyme was found deregulated as this enzyme affects the wobble position (position 34) of specific tRNAs. Our data points to a distinct codon usage pattern between up and downregulated genes in cancer, which might be caused by the deregulation of specific tRNA modifying enzymes. This codon usage bias may augment the transcription and translation efficiency of some genes that otherwise, in a normal situation, would be translated less efficiently.