1 resultado para data visualisation

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tal como o título indica, esta tese estuda problemas de cobertura com alcance limitado. Dado um conjunto de antenas (ou qualquer outro dispositivo sem fios capaz de receber ou transmitir sinais), o objectivo deste trabalho é calcular o alcance mínimo das antenas de modo a que estas cubram completamente um caminho entre dois pontos numa região. Um caminho que apresente estas características é um itinerário seguro. A definição de cobertura é variável e depende da aplicação a que se destina. No caso de situações críticas como o controlo de fogos ou cenários militares, a definição de cobertura recorre à utilização de mais do que uma antena para aumentar a eficácia deste tipo de vigilância. No entanto, o alcance das antenas deverá ser minimizado de modo a manter a vigilância activa o maior tempo possível. Consequentemente, esta tese está centrada na resolução deste problema de optimização e na obtenção de uma solução particular para cada caso. Embora este problema de optimização tenha sido investigado como um problema de cobertura, é possível estabelecer um paralelismo entre problemas de cobertura e problemas de iluminação e vigilância, que são habitualmente designados como problemas da Galeria de Arte. Para converter um problema de cobertura num de iluminação basta considerar um conjunto de luzes em vez de um conjunto de antenas e submetê-lo a restrições idênticas. O principal tema do conjunto de problemas da Galeria de Arte abordado nesta tese é a 1-boa iluminação. Diz-se que um objecto está 1-bem iluminado por um conjunto de luzes se o invólucro convexo destas contém o objecto, tornando assim este conceito num tipo de iluminação de qualidade. O objectivo desta parte do trabalho é então minimizar o alcance das luzes de modo a manter uma iluminação de qualidade. São também apresentadas duas variantes da 1-boa iluminação: a iluminação ortogonal e a boa !-iluminação. Esta última tem aplicações em problemas de profundidade e visualização de dados, temas que são frequentemente abordados em estatística. A resolução destes problemas usando o diagrama de Voronoi Envolvente (uma variante do diagrama de Voronoi adaptada a problemas de boa iluminação) é também proposta nesta tese.