2 resultados para branch number
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
A family of quadratic programming problems whose optimal values are upper bounds on the independence number of a graph is introduced. Among this family, the quadratic programming problem which gives the best upper bound is identified. Also the proof that the upper bound introduced by Hoffman and Lovász for regular graphs is a particular case of this family is given. In addition, some new results characterizing the class of graphs for which the independence number attains the optimal value of the above best upper bound are given. Finally a polynomial-time algorithm for approximating the size of the maximum independent set of an arbitrary graph is described and the computational experiments carried out on 36 DIMACS clique benchmark instances are reported.
Resumo:
Perturbations of asymptotically Anti-de-Sitter (AdS) spacetimes are often considered by imposing field vanishing boundary conditions (BCs) at the AdS boundary. Such BCs, of Dirichlet-type, imply a vanishing energy flux at the boundary, but the converse is, generically, not true. Regarding AdS as a gravitational box, we consider vanishing energy flux (VEF) BCs as a more fundamental physical requirement and we show that these BCs can lead to a new branch of modes. As a concrete example, we consider Maxwell perturbations on Kerr-AdS black holes in the Teukolsky formalism, but our formulation applies also for other spin fields. Imposing VEF BCs, we find a set of two Robin BCs, even for Schwarzschild-AdS black holes. The Robin BCs on the Teukolsky variables can be used to study quasinormal modes, superradiant instabilities and vector clouds. As a first application, we consider here the quasinormal modes of Schwarzschild-AdS black holes. We find that one of the Robin BCs yields the quasinormal spectrum reported in the literature, while the other one unveils a new branch for the quasinormal spectrum.