1 resultado para batch equilibrium
em Repositório Institucional da Universidade de Aveiro - Portugal
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (2)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (8)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (2)
- Archive of European Integration (6)
- Aston University Research Archive (34)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (153)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (41)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (68)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (58)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (11)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (1)
- Digital Commons at Florida International University (5)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (1)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (19)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (14)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (4)
- National Center for Biotechnology Information - NCBI (12)
- Publishing Network for Geoscientific & Environmental Data (24)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (6)
- Repositorio Academico Digital UANL (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (3)
- Repositório da Produção Científica e Intelectual da Unicamp (26)
- Repositório digital da Fundação Getúlio Vargas - FGV (36)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (65)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Scielo Saúde Pública - SP (31)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (17)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (17)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (11)
- Universidade Complutense de Madrid (4)
- Universidade do Minho (5)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (22)
- Université de Montréal, Canada (14)
- University of Connecticut - USA (7)
- University of Michigan (37)
- University of Queensland eSpace - Australia (77)
- University of Southampton, United Kingdom (1)
Resumo:
This thesis addresses the Batch Reinforcement Learning methods in Robotics. This sub-class of Reinforcement Learning has shown promising results and has been the focus of recent research. Three contributions are proposed that aim to extend the state-of-art methods allowing for a faster and more stable learning process, such as required for learning in Robotics. The Q-learning update-rule is widely applied, since it allows to learn without the presence of a model of the environment. However, this update-rule is transition-based and does not take advantage of the underlying episodic structure of collected batch of interactions. The Q-Batch update-rule is proposed in this thesis, to process experiencies along the trajectories collected in the interaction phase. This allows a faster propagation of obtained rewards and penalties, resulting in faster and more robust learning. Non-parametric function approximations are explored, such as Gaussian Processes. This type of approximators allows to encode prior knowledge about the latent function, in the form of kernels, providing a higher level of exibility and accuracy. The application of Gaussian Processes in Batch Reinforcement Learning presented a higher performance in learning tasks than other function approximations used in the literature. Lastly, in order to extract more information from the experiences collected by the agent, model-learning techniques are incorporated to learn the system dynamics. In this way, it is possible to augment the set of collected experiences with experiences generated through planning using the learned models. Experiments were carried out mainly in simulation, with some tests carried out in a physical robotic platform. The obtained results show that the proposed approaches are able to outperform the classical Fitted Q Iteration.