2 resultados para bacterial disease

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alzheimer’s disease is a chronic progressive neurodegenerative disease and is the most common form of dementia (estimated 50−60% of all cases), associated with loss of memory (in particular episodic memory), cognitive decline, and behavioural and physical disability, ultimately leading to death. Alzheimer’s disease is a complex disease, mostly occurring sporadically with no apparent inheritance and being the age the main risk factor. The production and accumulation of amyloid-beta peptide in the central nervous system is a key event in the development of Alzheimer’s disease. This project is devoted to the synthesis of amyloid-beta ligands, fluorophores and blood brain barrier-transporters for diagnosis and therapy of Alzheimer’s disease. Different amyloid-beta ligands will be synthesized and their ability to interact with amyloid-beta plaques will be studied with nuclear magnetic resonance techniques and a process of lead optimization will be performed. Many natural and synthetic compounds able to interact as amyloid-beta ligands have been identified. Among them, a set of small molecules in which aromatic moieties seem to play a key role to inhibit amyloid-beta aggregation, in particular heteroaromatic polycyclic compounds such as tetracyclines. Nevertheless tetracyclines suffer from chemical instability, low water solubility and possess, in this contest, undesired anti-bacterial activity. In order to overcome these limitations, one of our goals is to synthesize tetracyclines analogues bearing a polycyclic structure with improved chemical stability and water solubility, possibly lacking antibacterial activity but conserving the ability to interact with amyloid-beta peptides. Known tetracyclines have in common a fourth cycle without an aromatic character and with different functionalisations. We aim to synthesize derivatives in which this cycle is represented by a sugar moiety, thus bearing different derivatisable positions or create derivatives in which we will increase or decrease the number of fused rings. In order to generate a potential drug-tool candidate, these molecules should also possess the correct chemical-physical characteristics. The glycidic moiety, not being directly involved in the binding, it assures further possible derivatizations, such as conjugation to others molecular entities (nanoparticles, polymeric supports, etc.), and functionalization with chemical groups able to modulate the hydro/lipophilicity. In order to be useful such compounds should perform their action within the brain, therefore they have to be able to cross the blood brain barrier, and to be somehow detected for diagnostic purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacterial collagenases are metalloproteinases involved in the degradation of the extracellular matrices of animal cells, due to their ability to digest native collagen. These enzymes are important virulence factors in a variety of pathogenic bacteria. Nonetheless, there is a lack of scientific consensus for a proper and well-defined classification of these enzymes and a vast controversy regarding the correct identification of collagenases. Clostridial collagenases were the first ones to be identified and characterized and are the reference enzymes for comparison of newly discovered collagenolytic enzymes. In this review we present the most recent data regarding bacterial collagenases and overview the functional and structural diversity of bacterial collagenases. An overall picture of the molecular diversity and distribution of these proteins in nature will also be given. Particular aspects of the different proteolytic activities will be contextualized within relevant areas of application, mainly biotechnological processes and therapeutic uses. At last, we will present a new classification guide for bacterial collagenases that will allow the correct and straightforward classification of these enzymes.