7 resultados para aqueous
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Desenvolveu-se um novo método de processamento coloidal em meio aquoso para consolidar cerâmicos de α-Y-SiAlON, os quais foram sinterizados por prensagem isostática a quente (HIP) e por spark plasma sintering (SPS). Preparou-se com sucesso uma suspensão aquosa de pós precursores de YSiAlON (Si3N4, Al2O3, Y2O3 e AlN), temporariamente estável, usando Dolapix PC21 como dispersante, permitindo a fabricação de pós granulados pela técnica de aspersão-congelamento-liofilização e a consolidação de corpos em verde por enchimento por barbotina. Avaliou-se o efeito do excesso de oxigénio introduzido pelo processamento aquoso no desenvolvimento microestrutural e nas propriedades mecânicas. Os corpos de Y-SiAlON consolidados por enchimento por barbotina e sinterizados por HIP a 1800ºC apresentaram microestruturas e propriedades mecânicas similares a corpos consolidados por prensagem a seco. Estes materiais exibiram densificação completa, dureza Vickers máxima de 2003 e tenacidade à fractura (método SEVNB) máxima de 5.20 MPam1/2. Foi ainda possível estabelecer uma relação estreita entre o aumento do conteúdo em oxigénio das amostras sinterizadas e a diminuição da tenacidade à fractura. Na tentativa de melhorar a tenacidade à fractura dos materiais, procedeu-se à incorporação nas suspensões de sementes de Ca-α-SiAlON de geometria alongada produzidas por síntese por combustão, adicionadas como agentes de reforço. A síntese por combustão realizada em larga escala (cargas até 1 kg) não produziu efeitos negativos óbvios nos produtos da reacção. Investigara-se os efeitos da adição de 5 % em peso de sementes nas propriedades mecânicas e no desenvolvimento microestrutural de amostras densificadas por HIP. Em comparação com os materiais sem sementes, a tenacidade à fractura (método SEVNB) aumentou 13%, mas a dureza Vickers resultou 14,5% inferior. A sinterização por SPS permitiu obter densificação completa a temperaturas tão baixas como 1600ºC a partir dos pós granulados de Y-SiAlON sem a adição extra de Y2O3 para aumentar o teor de fase líquida. Os materiais sinterizados a 1700ºC e 1600ºC mostraram valores máximos de tenacidade à fractura de 4.36 e 4.20 MPam1/2 (método SEVNB), e de dureza Vickers de 2089 e 2084, respectivamente. Esta técnica de sinterização permitiu ainda obter corpos sinterizados translúcidos com uma transmitância máxima de 61% numa amostra de 2mm de espessura. Os corpos translúcidos apresentaram dureza Vickers de 2154 e tenacidade à fractura 3.74 MPam1/2 (método SEVNB).
Resumo:
O Mercúrio é um dos metais pesados mais tóxicos existentes no meio ambiente, é persistente e caracteriza-se por bioamplificar e bioacumular ao longo da cadeia trófica. A poluição com mercúrio é um problema à escala global devido à combinação de emissões naturais e emissões antropogénicas, o que obriga a políticas ambientais mais restritivas sobre a descarga de metais pesados. Consequentemente o desenvolvimento de novos e eficientes materiais e de novas tecnologias para remover mercúrio de efluentes é necessário e urgente. Neste contexto, alguns materiais microporosos provenientes de duas famílias, titanossilicatos e zirconossilicatos, foram investigados com o objectivo de avaliar a sua capacidade para remover iões Hg2+ de soluções aquosas. De um modo geral, quase todos os materiais estudados apresentaram elevadas percentagens de remoção, confirmando que são bons permutadores iónicos e que têm capacidade para serem utilizados como agentes descontaminantes. O titanossilicato ETS-4 foi o material mais estudado devido à sua elevada eficiência de remoção (>98%), aliada à pequena quantidade de massa necessária para atingir essa elevada percentagem de remoção. Com apenas 4 mg⋅dm-3 de ETS-4 foi possível tratar uma solução com uma concentração igual ao valor máximo admissível para descargas de efluentes em cursos de água (50 μg⋅dm-3) e obter água com qualidade para consumo humano (<1.0 μg⋅dm-3), de acordo com a legislação Portuguesa (DL 236/98). Tal como para outros adsorbentes, a capacidade de remoção de Hg2+ do ETS- 4 depende de várias condições experimentais, tais como o tempo de contacto, a massa, a concentração inicial de mercúrio, o pH e a temperatura. Do ponto de vista industrial as condições óptimas para a aplicação do ETS-4 são bastante atractivas, uma vez que não requerem grandes quantidades de material e o tratamento da solução pode ser feito à temperatura ambiente. A aplicação do ETS-4 torna-se ainda mais interessante no caso de efluentes hospitalares, de processos de electro-deposição com níquel, metalúrgica, extracção de minérios, especialmente ouro, e indústrias de fabrico de cloro e soda cáustica, uma vez que estes efluentes apresentam valores de pH semelhantes ao valor de pH óptimo para a aplicação do ETS-4. A cinética do processo de troca iónica é bem descrita pelo modelo Nernst-Planck, enquanto que os dados de equilíbrio são bem ajustados pelas isotérmicas de Langmuir e de Freundlich. Os parâmetros termodinâmicos, ΔG° and ΔH° indicam que a remoção de Hg2+ pelo ETS-4 é um processo espontâneo e exotérmico. A elevada eficiência do ETS-4 é confirmada pelos valores da capacidade de remoção de outros materiais para os iões Hg2+, descritos na literatura. A utilização de coluna de ETS-4 preparada no nosso laboratório, para a remoção em contínuo de Hg2+ confirma que este material apresenta um grande potencial para ser utilizado no tratamento de águas. ABSTRACT: Mercury is one of the most toxic heavy metals, exhibiting a persistent character in the environment and biota as well as bioamplification and bioaccumulation along the food chain. Natural inputs combined with the global anthropogenic sources make mercury pollution a planetary-scale problem, and strict environmental policies on metal discharges have been enforced. The development of efficient new materials and clean-up technologies for removing mercury from effluents is, thus, timely. In this context, in my study, several microporous materials from two families, titanosilicates and zirconosilicates were investigated in order to assess their Hg2+ sorption capacity and removal efficiency, under different operating conditions. In general, almost all microporous materials studied exhibited high removal efficiencies, confirming that they are good ion exchangers and have potential to be used as Hg2+ decontaminant agents. Titanosilicate ETS-4 was the material most studied here, by its highest removal efficiency (>98%) and lowest mass necessary to attain it. Moreover, according with the Portuguese legislation (DL 236/98) it is possible to attain drinking water quality (i.e. [Hg2+]< 1.0 μg⋅dm-3) by treating a solution with a Hg2+ concentration equal to the maximum value admissible for effluents discharges into water bodies (50 μg⋅dm-3), using only 4 mg⋅dm-3 of ETS-4. Even in the presence of major freshwater cations, ETS-4 removal efficiency remains high. Like for other adsorbents, the sorption capacity of ETS-4 for Hg2+ ions is strongly dependent on the operating conditions, such as contact time, mass, initial Hg2+ concentration and solution pH and, to a lesser extent, temperature. The optimum operating conditions found for ETS-4 are very attractive from the industrial point of view because the application of ETS-4 for the treatment of wastewater and/or industrial effluents will not require larges amounts of adsorbent, neither energy supply for temperature adjustments becoming the removal process economically competitive. These conditions become even more interesting in the case of medical institutions liquid, nickel electroplating process, copper smelter, gold ore tailings and chlor-alkali effluents, since no significant pH adjustments to the effluent are necessary. The ion exchange kinetics of Hg2+ uptake is successfully described by the Nernst-Planck based model, while the ion exchange equilibrium is well fitted by both Langmuir and Freundlich isotherms. Moreover, the feasibility of the removal process was confirmed by the thermodynamic parameters (ΔG° and ΔH°) which indicate that the Hg2+ sorption by ETS-4 is spontaneous and exothermic. The higher efficiency of ETS-4 for Hg2+ ions is corroborate by the values reported in literature for the sorption capacity of other adsorbents for Hg2+ ions. The use of an ETS-4 fixed-bed ion exchange column, manufactured in our laboratory, in the continuous removal of Hg2+ ions from solutions confirms that this titanosilicate has potential to be used in industrial water treatment.
Resumo:
Ionic liquids are a class of solvents that, due to their unique properties, have been proposed in the past few years as alternatives to some hazardous volatile organic compounds. They are already used by industry, where it was possible to improve different processes by the incorporation of this kind of non-volatile and often liquid solvents. However, even if ionic liquids cannot contribute to air pollution, due to their negligible vapour pressures, they can be dispersed thorough aquatic streams thus contaminating the environment. Therefore, the main goals of this work are to study the mutual solubilities between water and different ionic liquids in order to infer on their environmental impact, and to propose effective methods to remove and, whenever possible, recover ionic liquids from aqueous media. The liquid-liquid phase behaviour of different ionic liquids and water was evaluated in the temperature range between (288.15 and 318.15) K. For higher melting temperature ionic liquids a narrower temperature range was studied. The gathered data allowed a deep understanding on the structural effects of the ionic liquid, namely the cation core, isomerism, symmetry, cation alkyl chain length and the anion nature through their mutual solubilities (saturation values) with water. The experimental data were also supported by the COnductor-like Screening MOdel for Real Solvents (COSMO-RS), and for some more specific systems, molecular dynamics simulations were also employed for a better comprehension of these systems at a molecular level. On the other hand, in order to remove and recover ionic liquids from aqueous solutions, two different methods were studied: one based on aqueous biphasic systems, that allowed an almost complete recovery of hydrophilic ionic liquids (those completely miscible with water at temperatures close to room temperature) by the addition of strong salting-out agents (Al2(SO4)3 or AlK(SO4)2); and the other based on the adsorption of several ionic liquids onto commercial activated carbon. The first approach, in addition to allowing the removal of ionic liquids from aqueous solutions, also makes possible to recover the ionic liquid and to recycle the remaining solution. In the adsorption process, only the removal of the ionic liquid from aqueous solutions was attempted. Nevertheless, a broad understanding of the structural effects of the ionic liquid on the adsorption process was attained, and a final improvement on the adsorption of hydrophilic ionic liquids by the addition of an inorganic salt (Na2SO4) was also achieved. Yet, the development of a recovery process that allows the reuse of the ionic liquid is still required for the development of sustainable processes.
Resumo:
According to the World Health Organization, around 8.2 million people die each year with cancer. Most patients do not perform routine diagnoses and the symptoms, in most situations, occur when the patient is already at an advanced stage of the disease, consequently resulting in a high cancer mortality. Currently, prostate cancer is the second leading cause of death among males worldwide. In Portugal, this is the most diagnosed type of cancer and the third that causes more deaths. Taking into account that there is no cure for advanced stages of prostate cancer, the main strategy comprises an early diagnosis to increase the successful rate of the treatment. The prostate specific antigen (PSA) is an important biomarker of prostate cancer that can be detected in biological fluids, including blood, urine and semen. However, the commercial kits available are addressed for blood samples and the commonly used analytical methods for their detection and quantification requires specialized staff, specific equipment and extensive sample processing, resulting in an expensive process. Thus, the aim of this MSc thesis consisted on the development of a simple, efficient and less expensive method for the extraction and concentration of PSA from urine samples using aqueous biphasic systems (ABS) composed of ionic liquids. Initially, the phase diagrams of a set of aqueous biphasic systems composed of an organic salt and ionic liquids were determined. Then, their ability to extract PSA was ascertained. The obtained results reveal that in the tested systems the prostate specific antigen is completely extracted to the ionic-liquid-rich phase in a single step. Subsequently, the applicability of the investigated ABS for the concentration of PSA was addressed, either from aqueous solutions or urine samples. The low concentration of this biomarker in urine (clinically significant below 150 ng/mL) usually hinders its detection by conventional analytical techniques. The obtained results showed that it is possible to extract and concentrate PSA, up to 250 times in a single-step, so that it can be identified and quantified using less expensive techniques.
Resumo:
According to the World Health Organization, around 8.2 million people die each year with cancer. Most patients do not perform routine diagnoses and the symptoms, in most situations, occur when the patient is already at an advanced stage of the disease, consequently resulting in a high cancer mortality. Currently, prostate cancer is the second leading cause of death among males worldwide. In Portugal, this is the most diagnosed type of cancer and the third that causes more deaths. Taking into account that there is no cure for advanced stages of prostate cancer, the main strategy comprises an early diagnosis to increase the successful rate of the treatment. The prostate specific antigen (PSA) is an important biomarker of prostate cancer that can be detected in biological fluids, including blood, urine and semen. However, the commercial kits available are addressed for blood samples and the commonly used analytical methods for their detection and quantification requires specialized staff, specific equipment and extensive sample processing, resulting in an expensive process. Thus, the aim of this MSc thesis consisted on the development of a simple, efficient and less expensive method for the extraction and concentration of PSA from urine samples using aqueous biphasic systems (ABS) composed of ionic liquids. Initially, the phase diagrams of a set of aqueous biphasic systems composed of an organic salt and ionic liquids were determined. Then, their ability to extract PSA was ascertained. The obtained results reveal that in the tested systems the prostate specific antigen is completely extracted to the ionic-liquid-rich phase in a single step. Subsequently, the applicability of the investigated ABS for the concentration of PSA was addressed, either from aqueous solutions or urine samples. The low concentration of this biomarker in urine (clinically significant below 150 ng/mL) usually hinders its detection by conventional analytical techniques. The obtained results showed that it is possible to extract and concentrate PSA, up to 250 times in a single-step, so that it can be identified and quantified using less expensive techniques.
Resumo:
Significant improvements in human health have been achieved through the increased consumption of pharmaceutical drugs. However, most of these active pharmaceutical ingredients (APIs) are excreted by mammals (in a metabolized or unchanged form) into the environment. The presence of residual amounts of these contaminants was already confirmed in aqueous streams since treatment processes either wastewater treatment plants (WWTPs) or sewage treatment plants (STPs) are not specifically designed for this type of pollutants. Although they are present in aqueous effluents, they are usually at very low concentrations, most of the times below the detection limits of analytical equipment used for their quantification, hindering their accurate monitoring. Therefore, the development of a pre-concentration technique in order to accurately quantify and monitor these components in aqueous streams is of major relevance. This work addresses the use of liquid-liquid equilibria, applying ionic liquids (ILs), for the extraction and concentration of non-steroidal anti-inflammatory drugs (NSAIDs) from aqueous effluents. Particularly, aqueous biphasic systems (ABSs) composed of ILs and potassium citrate were investigated in the extraction and concentration of naproxen, diclofenac and ketoprofen from aqueous media. Both the extraction efficiency and concentration factor achievable by these systems was determined and evaluated. Within the best conditions, extraction efficiencies of 99.4% and concentration factors up to 13 times were obtained.
Resumo:
The immune system is able to produce antibodies, which have the capacity to recognize and to bind to foreign molecules or pathogenic organisms. Currently, there are a diversity of diseases that can be treated with antibodies, like immunoglobulins G (IgG). Thereby, the development of cost-efficient processes for their extraction and purification is an area of main interest in biotechnology. Aqueous biphasic systems (ABS) have been investigated for this purpose, once they allow the reduction of costs and the number of steps involved in the process, when compared with conventional methods. Nevertheless, typical ABS have not showed to be selective, resulting in low purification factors and yields. In this context, the addition of ionic liquids (ILs) as adjuvants can be a viable and potential alternative to tailor the selectivity of these systems. In this work, ABS composed of polyethylene glycol (PEG) of different molecular weight, and a biodegradable salt (potassium citrate) using ILs as adjuvants (5 wt%), were studied for the extraction and purification of IgG from a rabbit source. Initially, it was tested the extraction time, the effect on the molecular weight of PEG in a buffer solution of K3C6H5O7/C6H8O7 at pH≈7, and the effect of pH (59) on the yield (YIgG) and extraction efficiency (EEIgG%) of IgG. The best results regarding EEIgG% were achieved with a centrifugation step at 1000 rpm, during 10 min, in order to promote the separation of phases followed by 120 min of equilibrium. This procedure was then applied to the remaining experiments. The results obtained in the study of PEGs with different molecular weights, revealed a high affinity of IgG for the PEG-rich phase, and particularly for PEGs of lower molecular weight (EEIgG% of 96 % with PEG 400). On the other hand, the variation of pH in the buffer solution did not show a significant effect on the EEIgG%. Finally, it was evaluated the influence of the addition of different ILs (5% wt) on the IgG extraction in ABS composed of PEG 400 at pH≈7. In these studies, it was possible to obtain EEIgG% of 100% with the ILs composed of the anions [TOS]-, [CH3CO2]-and Cl-, although the obtained YIgG% were lower than 40%. On the other hand, the ILs composed of the anions Br-, as well as of the cation [C10mim]+, although not leading to EEIgG% of 100%, provide an increase in the YIgG%. ABS composed of PEG, a biodegradable organic salt and ILs as adjuvants, revealed to be an alternative and promising method to purify IgG. However, additional studies are still required in order to reduce the loss of IgG.