1 resultado para aggregation rules

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genetic code establishes the rules that govern gene translation into proteins. It was established more than 3.5 billion years ago and it is one of the most conserved features of life. Despite this, several alterations to the standard genetic code have been discovered in both prokaryotes and eukaryotes, namely in the fungal CTG clade where a unique seryl transfer RNA (tRNACAG Ser) decodes leucine CUG codons as serine. This tRNACAG Ser appeared 272±25 million years ago through insertion of an adenosine in the middle position of the anticodon of a tRNACGA Ser gene, which changed its anticodon from 5´-CGA-3´ to 5´-CAG-3´. This most dramatic genetic event restructured the proteome of the CTG clade species, but it is not yet clear how and why such deleterious genetic event was selected and became fixed in those fungal genomes. In this study we have attempted to shed new light on the evolution of this fungal genetic code alteration by reconstructing its evolutionary pathway in vivo in the yeast Saccharomyces cerevisiae. For this, we have expressed wild type and mutant versions of the C. albicans tRNACGA Ser gene into S. cerevisiae and evaluated the impact of the mutant tRNACGA Ser on fitness, tRNA stability, translation efficiency and aminoacylation kinetics. Our data demonstrate that these mutants are expressed and misincorporate Ser at CUGs, but their expression is repressed through an unknown molecular mechanism. We further demonstrate, using in vivo forced evolution methodologies, that the tRNACAG Ser can be easily inactivated through natural mutations that prevent its recognition by the seryl-tRNA synthetase. The overall data show that repression of expression of the mistranslating tRNACAG Ser played a critical role on the evolution of CUG reassignment from Leu to Ser. In order to better understand the evolution of natural genetic code alterations, we have also engineered partial reassignment of various codons in yeast. The data confirmed that genetic code ambiguity affects fitness, induces protein aggregation, interferes with the cell cycle and results in nuclear and morphologic alterations, genome instability and gene expression deregulation. Interestingly, it also generates phenotypic variability and phenotypes that confer growth advantages in certain environmental conditions. This study provides strong evidence for direct and critical roles of the environment on the evolution of genetic code alterations.