2 resultados para Volcanic plains of Victoria
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
The island of São Jorge (38º 45’ 24’’ N - 28º 20’ 44’’W and 38º 33’ 00’’ N - 27º 44’ 32’’ W) is one of the nine islands of the Azores Archipelago that is rooted in the Azores Plateau, a wide and complex region which encompasses the triple junction between the American, Eurasia and Nubia plates. São Jorge Island has grown by fissural volcanic activity along fractures with the regional WNW-ESE trend, unveiling the importance of the regional tectonics during volcanic activity. The combination of the volcanostratigraphy (Forjaz & Fernandes, 1975; and Madeira, 1998) with geochronological data evidences that the island developed during two main volcanic phases. The first subaerial phase that occurred between 1.32 and 1.21 Ma ago (Hildenbrand et al. 2008) is recorded on the lava sequence forming the cliff at Fajã de São João, while the second phase started at 757 ka ago, is still active, and edified the rest of the island. This second phase edified the east side of the island that corresponds to Topo Volcanic Complex, in the period between 757 and 543 ka ago, while the west side named Rosais Volcanic Complex, started at 368 ka ago (Hildenbrand et al. 2008) and was still active at 117 ka ago. After the onset of Rosais, volcanic activity migrates to the center of São Jorge edifying Manadas Volcanic Complex. The volcanism on São Jorge is dominantly alkaline, with a narrow lithological composition ranging between the basanites/tefrites through the basaltic trachyandesites, in spite of this the two volcanic phases show distinct mineralogical, petrographic and geochemical characteristics that should be related with different petrogenetic conditions and growth rates of the island. Abstract viii During the first volcanic phase, growth rates are faster (≈3.4 m/ka), the lavas are slightly less alkaline and plagioclase-richer, pointing to the existence of a relative shallow and dynamic magma chamber where fractional crystallization associated with gravitational segregation and accumulation processes, produced the lavas of Fajã de São João sequence. The average growth rates during the second volcanic phase are lower (≈1.9 m/ka) and the lavas are mainly alkaline sodic, with a mineralogy composed by olivine, pyroxene, plagioclase and oxide phenocrysts, in a crystalline groundmass. The lavas are characterized by enrichment in incompatible trace element and light REE, but show differences for close-spaced lavas that unveil, in some cases, slight different degrees of fertilization of the mantle source along the island. These differences might also result from higher degrees of partial melting, as observed in the early stages of Topo and Rosais volcanic complexes, of a mantle source with residual garnet and amphibole, and/or from changing melting conditions of the mantle source as pressure. The subtle geochemical differences of the lavas contrast with the isotopic signatures, obtained from Sr-Nd-Pb-Hf isotopes, that São Jorge Island volcanism exhibit along its volcanic complexes. The lavas from Topo Volcanic Complex and from the submarine flank, i.e. the lavas located east of Ribeira Seca Fault, sample a mantle source with similar isotopic signature that, in terms of lead, overlaps Terceira Island. The lavas from Rosais and Manadas volcanic complexes, the western lavas, sample a mantle source that becomes progressively more distinct towards the west end of the island and that, in terms of lead isotopes, trends towards the isotopic composition of Faial Island. The two isotopic signatures of São Jorge, observed from the combination of lead isotopes with the other three systems, seem to result from the mixing of three distinct end-members. These end-members are (1) the common component related with the Azores Plateau and the MAR, (2) the eastern component with a FOZO signature and possibly related with the Azores plume located beneath Terceira, and (3) the western component, similar to Faial, where the lithosphere could have been entrained by an ancient magmatic liquid, isolated for a period longer than 2Ga. The two trends observed in the island reinforce the idea of small-scale mantle heterogeneities beneath the Azores region, as it has been proposed to explain the isotopic diversity observed in the Archipelago.
Resumo:
A presente tese tem por objetivo principal contribuir para o conhecimento da geoquímica sedimentar da zona oceânica da crista da Terceira e montanhas submarinas a sul (região entre 29-39ºN e 27-32ºW), integrando também a caraterização dos metais e nutrientes na coluna de água e propondo concentrações para servirem de referência nesta região do Atlântico Central. Para o efeito foram realizadas amostragens na coluna de água em sete locais e de sedimento em cinco locais, durante a campanha oceanográfica designada por EMEPC/AÇORES/G3/2007 a bordo do navio SV Kommandor Jack, no âmbito do projeto da Estrutura de Missão para a Extensão da Plataforma Continental (EMEPC). Os perfis de CTD da coluna de água na região estudada revelam a presença de massas de água distintas: a Western North Atlantic Central Water (WNACW), a Eastern North Atlantic Central Water tropical (ENACWt), a Eastern North Atlantic Central Water polar (ENACWp), a Mediterranean Overflow Water (MOW), a Deep Mediterranean Water (DMW) e a North Eastern Atlantic Deep Water (NEADW). Observou-se nos perfis de temperatura e salinidade, referentes aos primeiros 200 m da coluna de água, um gradiente meridional negativo entre as estações localizadas na crista da Terceira e as estações localizadas mais a sul. Observou-se nas águas superficiais valores de oxigénio dissolvido de 93% e de pH de 8,1, assim como que as concentrações dos nutrientes NOx, PO4 e SiO2 variam de acordo com a atividade biológica, tendo-se registado concentrações medianas mais baixas, respetivamente de 6,5, 0,23 e 1,3 mol L-1, que aumentam com a profundidade devido à ausência de produção primária (respetivamente 31, 1,4 e 22 mol L-1). As concentrações de NH4 e de SO4 não variam significativamente nas massas de água, sendo os valores medianos mínimos e máximos de 0,69 a 0,79 mol L-1 para o NH4 e de 30 a 32 mol L-1 para o SO4. São propostas concentrações de referência para as massas de água, para os elementos cobre, cádmio, chumbo e arsénio. Os perfis de sedimento analisados permitem distinguir os sedimentos na crista da Terceira (core A) dos restantes (cores B a E). A grande variabilidade textural encontrada no core A, que contrasta com os outros cores analisados, deve-se a importantes contribuições terrígenas, originadas pela erosão sub-aérea e pela atividade vulcânica das ilhas próximas. iv resumo (continuação) A análise mineralógica, efetuada à fração areia e à fração fina (< 63 μm), confirma que os sedimentos do core A derivam de rochas vulcânicas formadas maioritariamente por piroxenas, olivinas, anfíbolas, biotite, alterites e ainda calcite, plagióclase e magnetite, tendo-se identificado ao microscópio a glauconite e o vidro vulcânico. De acordo com a composição química destes minerais o core A apresenta valores mais elevados de Al, Fe, K, P, Mg, Si, Na, Zn, V, Cr e Mn relativamente aos cores B a E. Os cores B a E apresentam grandes quantidades de calcite (>80%) formada maioritariamente por foraminíferos e nanoplâncton calcário (cocolitóforos). A fração areia confirma a composição maioritariamente carbonatada com grande abundância de material biogénico formado por oozes de foraminíferos (planctónicos e bentónicos) com raras espículas de espongiários e restos de conchas. Os cores B a E apresentam valores muito mais elevados que o core A para os elementos Ca e Sr. Os resultados para o Al, Fe, K, P, Si, Na, As, Cu, Ni, Zn, V, Cr, Li, Pb, Cd e Co presentes nos locais B, C, D e E sugerem que estes cores são comparáveis aos sedimentos de fundo carbonatados. Propõe-se concentrações de referência para a região do Atlântico compreendida entre 29-39ºN e 27-32ºW considerando a primeira camada colhida em cada core. Para o core A as concentrações são normalizadas a 5% de Al e CaCO3, enquanto que para os cores B a E são normalizadas a 2% de Al e CaCO3. Assim as concentrações de referência para o core A são: As – 18 mg kg-1, Cr – 91 mg kg-1, Cu – 127 mg kg-1, Ni – 84 mg kg-1, Pb – 41 mg kg-1, Hg – 41 ng g-1 e Zn – 482 mg kg-1. Para os cores B a E as concentrações de referência são: As – 3 mg kg-1, Cr – 10 mg kg-1, Cu – 36 mg kg-1 Ni – 12 mg kg -1, Hg – 3 ng g-1 e Zn – 20 mg kg-1. Para os restantes metais as concentrações de referência para o core A são: Al – 9%, Si – 25%, Fe – 6%, Ca – 13%, K – 2%, Mg – 2%, Na – 3%, P – 0,4%, Sr – 900 mg kg-1, Li – 10 mg kg-1, Mn – 1200 mg kg-1, Ba – 700 mg kg-1 e V – 140 mg kg-1. Para os cores B a E as concentrações de referência são: Al – 0,9%, Si – 2%, Fe – 0,2%, Ca – 95%, K – 0,3%, Mg – 0,4%, Na – 0,3%, P – 0,04%, Sr – 2600 mg kg-1, Li – 5 mg kg-1, Mn – 240 mg kg-1, Ba – 345 mg kg-1, Co – 2 mg kg-1 e V – 6 mg kg-1. Os resultados da presente tese constituem um contributo para a caraterização geoquímica da região e podem servir de referência à monitorização futura do mar dos Açores e montes submarinos a sul.