2 resultados para Udder healt and communication
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
The work presents a theoretical framework for the evaluation of e-Teaching that aims at positioning the online activities designed and developed by the teacher as to the Learning, Interaction and Technology Dimensions. The theoretical research that underlies the study was developed reflecting current thinking on the promotion of quality of teaching and of the integration of information and communication tools into the curriculum in Higher Education (HE), i.e., bearing in mind some European guidelines and policies on this subject. This way, an answer was sought to be given to one of the aims put forward in this study, namely to contribute towards the development of a conceptual framework to support research on evaluation of e-teaching in the context of HE. Based on the theoretical research carried out, an evaluation tool (SCAI) was designed, which integrates the two questionnaires developed to collect the teachers' and the students' perceptions regarding the development of e-activities. Consequently, an empirical study was structured and carried out, allowing SCAI tool to be tested and validated in real cases. From the comparison of the theoretical framework established and the analysis of the data obtained, we found that the differences in teaching should be valued and seen as assets by HE institutions rather than annihilated in a globalizing perspective.
Resumo:
Over the past few years, the number of wireless networks users has been increasing. Until now, Radio-Frequency (RF) used to be the dominant technology. However, the electromagnetic spectrum in these region is being saturated, demanding for alternative wireless technologies. Recently, with the growing market of LED lighting, the Visible Light Communications has been drawing attentions from the research community. First, it is an eficient device for illumination. Second, because of its easy modulation and high bandwidth. Finally, it can combine illumination and communication in the same device, in other words, it allows to implement highly eficient wireless communication systems. One of the most important aspects in a communication system is its reliability when working in noisy channels. In these scenarios, the received data can be afected by errors. In order to proper system working, it is usually employed a Channel Encoder in the system. Its function is to code the data to be transmitted in order to increase system performance. It commonly uses ECC, which appends redundant information to the original data. At the receiver side, the redundant information is used to recover the erroneous data. This dissertation presents the implementation steps of a Channel Encoder for VLC. It was consider several techniques such as Reed-Solomon and Convolutional codes, Block and Convolutional Interleaving, CRC and Puncturing. A detailed analysis of each technique characteristics was made in order to choose the most appropriate ones. Simulink models were created in order to simulate how diferent codes behave in diferent scenarios. Later, the models were implemented in a FPGA and simulations were performed. Hardware co-simulations were also implemented to faster simulation results. At the end, diferent techniques were combined to create a complete Channel Encoder capable of detect and correct random and burst errors, due to the usage of a RS(255,213) code with a Block Interleaver. Furthermore, after the decoding process, the proposed system can identify uncorrectable errors in the decoded data due to the CRC-32 algorithm.