2 resultados para Transgenetic algorithms
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
O desenvolvimento de sistemas computacionais é um processo complexo, com múltiplas etapas, que requer uma análise profunda do problema, levando em consideração as limitações e os requisitos aplicáveis. Tal tarefa envolve a exploração de técnicas alternativas e de algoritmos computacionais para optimizar o sistema e satisfazer os requisitos estabelecidos. Neste contexto, uma das mais importantes etapas é a análise e implementação de algoritmos computacionais. Enormes avanços tecnológicos no âmbito das FPGAs (Field-Programmable Gate Arrays) tornaram possível o desenvolvimento de sistemas de engenharia extremamente complexos. Contudo, o número de transístores disponíveis por chip está a crescer mais rapidamente do que a capacidade que temos para desenvolver sistemas que tirem proveito desse crescimento. Esta limitação já bem conhecida, antes de se revelar com FPGAs, já se verificava com ASICs (Application-Specific Integrated Circuits) e tem vindo a aumentar continuamente. O desenvolvimento de sistemas com base em FPGAs de alta capacidade envolve uma grande variedade de ferramentas, incluindo métodos para a implementação eficiente de algoritmos computacionais. Esta tese pretende proporcionar uma contribuição nesta área, tirando partido da reutilização, do aumento do nível de abstracção e de especificações algorítmicas mais automatizadas e claras. Mais especificamente, é apresentado um estudo que foi levado a cabo no sentido de obter critérios relativos à implementação em hardware de algoritmos recursivos versus iterativos. Depois de serem apresentadas algumas das estratégias para implementar recursividade em hardware mais significativas, descreve-se, em pormenor, um conjunto de algoritmos para resolver problemas de pesquisa combinatória (considerados enquanto exemplos de aplicação). Versões recursivas e iterativas destes algoritmos foram implementados e testados em FPGA. Com base nos resultados obtidos, é feita uma cuidada análise comparativa. Novas ferramentas e técnicas de investigação que foram desenvolvidas no âmbito desta tese são também discutidas e demonstradas.
Resumo:
Viscoelastic treatments are one of the most efficient treatments, as far as passive damping is concerned, particularly in the case of thin and light structures. In this type of treatment, part of the strain energy generated in the viscoelastic material is dissipated to the surroundings, in the form of heat. A layer of viscoelastic material is applied to a structure in an unconstrained or constrained configuration, the latter proving to be the most efficient arrangement. This is due to the fact that the relative movement of both the host and constraining layers cause the viscoelastic material to be subjected to a relatively high strain energy. There are studies, however, that claim that the partial application of the viscoelastic material is just as efficient, in terms of economic costs or any other form of treatment application costs. The application of patches of material in specific and selected areas of the structure, thus minimising the extension of damping material, results in an equally efficient treatment. Since the damping mechanism of a viscoelastic material is based on the dissipation of part of the strain energy, the efficiency of the partial treatment can be correlated to the modal strain energy of the structure. Even though the results obtained with this approach in various studies are considered very satisfactory, an optimisation procedure is deemed necessary. In order to obtain optimum solutions, however, time consuming numerical simulations are required. The optimisation process to use the minimum amount of viscoelastic material is based on an evolutionary geometry re-design and calculation of the modal damping, making this procedure computationally costly. To avert this disadvantage, this study uses adaptive layerwise finite elements and applies Genetic Algorithms in the optimisation process.