3 resultados para Tides
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Rin de Aveiro is a coastal lagoon located at the Central Region of Portugal subjected to the influence of the tides, resulting in a set of characteristic biotopes favouring anthropic and natural processes. Once managed and controlled correctly, each of these biotopes will allow simultaneously the biodiversity and integration in the making of the wetland landscape. In 1998, one of the final conclusions of the "MARIA" Demonstration Programme for the Integrated Management of Ria de Aveiro was that the poor current state of the environment area resulted from a set of interrelated factors. The Programme selected four (4) pilot-projects towards the integrated management of the lagoon biotopes as possible scenarios for an intervention. This selection was based in criteria related to environmental priorities and the maintenance of traditional economic activities in the region. The idea of choosing projects that would involve the whole geographic space of the Ria, without forgetting the other important themes interrelated with the Management Structure, emerged as a relevant aspect for their definition. Thus, and as a first test of this Management Structure functionality, the following task forces were put forward: Recovery and valorisation of the piers; Recovery of the former salt pans; Management of the agricultural fields of Baixo-Vouga; Implementation of measures for the classification of the Protected Landscape Area of the River Caster Mouth. This payer will report the main results of these pilot-projects attained during their first year period, especially the intervention strategies defined by the Partnership created for this aim.
Resumo:
Today the Ria de Aveiro of northern Portugal has a hydromorphological regime in which river influence is limited to periods of flood. For most of the annual cycle, tidal currents and wind waves are the major forcing agents in this complex coastal lagoon–estuarine system. The system has evolved over two centuries from one that was naturally fluvially dominant to one that is today tidally dominant. Human influence was a trigger for these changes, starting in 1808 when its natural evolution was halted by the construction of a new inlet/outlet channel through the mobile sand spit that isolates it from the Atlantic Ocean. In consequence, tidal ranges in the lagoon increased rapidly from ~0.1 m to >1 m and continued to increase, as a result of continued engineering works and dredging, today reaching ~3 m on spring tides. Hydromorphological adjustments that have taken place include the deepening of channels, an increase in the area of inter-tidal flats, regression of salt marsh, increased tidal propagation and increased saline intrusion. Loss of once abundant submerged aquatic vegetation (SAV), due to increased tidal flows, exacerbated by increased recreational activities, has been accompanied by a change from fine cohesive sediments to coarser, mobile sediments with reduced biological activity.
Resumo:
We investigate the secular dynamics of three-body circumbinary systems under the effect of tides. We use the octupolar non-restricted approximation for the orbital interactions, general relativity corrections, the quadrupolar approximation for the spins, and the viscous linear model for tides. We derive the averaged equations of motion in a simplified vectorial formalism, which is suitable to model the long-term evolution of a wide variety of circumbinary systems in very eccentric and inclined orbits. In particular, this vectorial approach can be used to derive constraints for tidal migration, capture in Cassini states, and stellar spin–orbit misalignment. We show that circumbinary planets with initial arbitrary orbital inclination can become coplanar through a secular resonance between the precession of the orbit and the precession of the spin of one of the stars. We also show that circumbinary systems for which the pericenter of the inner orbit is initially in libration present chaotic motion for the spins and for the eccentricity of the outer orbit. Because our model is valid for the non-restricted problem, it can also be applied to any three-body hierarchical system such as star–planet–satellite systems and triple stellar systems.