5 resultados para Tb3
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
In the past few years a new generation of multifunctional nanoparticles (NPs) has been proposed for biomedical applications, whose structure is more complex than the structure of their predecessor monofunctional counterparts. The development of these novel NPs aims at enabling or improving the performance in imaging, diagnosis and therapeutic applications. The structure of such NPs comprises several components exhibiting various functionalities that enable the nanoparticles to perform multiple tasks simultaneously, such as active targeting of certain cells or compartmentalization, imaging and delivery of active drugs. This thesis presents two types of bimodal bio-imaging probes and describes their physical and chemical properties, namely their texture, structure, and 1H dynamics and relaxometry, in order to evaluate their potential as MRI contrast agents. The photoluminescence properties of these probes are studied, aiming at assessing their interest as optical contrast agents. These materials combine the properties of the trivalent lanthanide (Ln3+) complexes and nanoparticles, offering an excellent solution for bimodal imaging. The designed T1- type contrast agent are SiO2@APS/DTPA:Gd:Ln or SiO2@APS/PMN:Gd:Ln (Ln= Eu or Tb) systems, bearing the active magnetic center (Gd3+) and the optically-active ions (Eu3+ and Tb3+) on the surface of silica NPs. Concerning the relaxometry properties, moderate r1 increases and significant r2 increases are observed in the NPs presence, especially at high magnetic fields, due to susceptibility effects on r2. The Eu3+ ions reside in a single low-symmetry site, and the photoluminescence emission is not influenced by the simultaneous presence of Gd3+ and Eu3+. The presence of Tb3+, rather than Eu3+ ion, further increases r1 but decreases r2. The uptake of these NPs by living cells is fast and results in an intensity increase in the T1-weighted MRI images. The optical features of the NPs in cellular pellets are also studied and confirm the potential of these new nanoprobes as bimodal imaging agents. This thesis further reports on a T2 contrast agent consisting of core-shell NPs with a silica shell surrounding an iron oxide core. The thickness of this silica shell has a significant impact on the r2 and r2* relaxivities, and a tentative model is proposed to explain this finding. The cell viability and the mitochondrial dehydrogenase expression given by the microglial cells are also evaluated.
Resumo:
Na ´ultima d´ecada emergiu uma linha de investiga¸c˜ao muito activa em term´ometros n˜ao invasivos e precisos que possam determinar temperatura `a escala nanom´etrica. Esta investiga¸c˜ao foi fortemente estimulada pelas numerosas solicita¸c˜oes da nanotecnologia e da biomedicina, por exemplo. Uma das abordagens mais promissoras prop˜oe o uso de i˜oes trivalentes de lantan´ıdeos que apresenta propriedades fotoluminescentes que dependem da temperatura. Neste trabalho demonstra-se que esta t´ecnica combina as vantagens de te um limite de detec¸c˜ao de 0.5 graus com sensibilidade at´e 4.5 % · K−1. Este term´ometro molecular pode ser processado em filmes finos ou nanopart´ıculas, abrindo os campos de aplica¸c˜ao a diferentes utiliza¸c˜oes. As nanopart´ıculas de s´ılica produzidas s˜ao caracterizadas na presen¸ca e na ausˆencia de i˜oes lantan´ıdeos. Sem o metal, as nanopart´ıculas de APTES/TEOS demonstram ser luminescentes sob excita¸c˜ao UV sem necessidade de utilizar qualquer tratamento t´ermico. O rendimento quˆantico de emiss˜ao depende apenas da propor¸c˜ao dos silanos e pode atingir o valor de 0.15 ± 0.02. A co-dopagem destas nanopart´ıculas com Eu3+ e Tb3+ permite obter sondas com resposta raciom´etrica, com a possibilidade de ajustar a gama de temperaturas de opera¸c˜ao e a sensibilidade, via desenho inteligente da matriz de suporte e dos ligandos de β-dicetona que est˜ao coordenados ao i˜ao met´alico. Quando processados como filmes, este term´ometro permite o mapeamento de temperaturas com resolu¸c˜ao espacial 1.8 μm. A racionaliza¸c˜ao da dependˆencia de temperatura ´e uma ferramenta ´util para desenvolver term´ometros que operam em gamas de temperatura espec´ıficos (e.g. gama de temperatura fisiol´ogica, 290-340 K) com sensibilidade acima de 0.5 % · K−1. A combina¸c˜ao de esfor¸cos de um grande n´umero de diversas disciplinas ir´a previsivelmente permitir o surgimento de term´ometros moleculares novos e sofisticados, preenchendo os principais requisitos das nanociencias.
Resumo:
During the last few decades, Metal-Organic Frameworks (MOFs), also known as Coordination Polymers, have attracted worldwide research attentions due to their incremented fascinating architectures and unique properties. These multidimensional materials have been potential applications in distinct areas: gas storage and separation, ion exchange, catalysis, magnetism, in optical sensors, among several others. The MOF research group at the University of Aveiro has prepared MOFs from the combination of phosphonate organic primary building units (PBUs) with, mainly, lanthanides. This thesis documents the last findings in this area involving the synthesis of multidimensional MOFs based on four di- or tripodal phosphonates ligands. The organic PBUs were designed and prepared by selecting and optimizing the best reaction conditions and synthetic routes. The self-assembly between phosphonate PBUs and rare-earths cations led to the formation of several 1D, 2D and 3D families of isotypical MOFs. The preparation of these materials was achieved by using distinct synthetic approaches: hydro(solvo)thermal, microwave- and ultrasound-assisted, one-pot and ionothermal synthesis. The selection of the organic PBUs showed to have an important role in the final architectures: while flexible phosphonate ligands afforded 1D, 2D and dense 3D structures, a large and rigid organic PBU isolated a porous 3D MOF. The crystal structure of these materials was successfully unveiled by powder or single-crystal X-ray diffraction. All multidimensional MOFs were characterized by standard solid-state techniques (FT-IR, electron microscopy (SEM and EDS), solid-state NMR, elemental and thermogravimetric analysis). Some MOF materials exhibited remarkable thermal stability and robustness up to ca. 400 ºC. The intrinsic properties of some MOFs were investigated. Photoluminescence studies revealed that the selected organic PBUs are suitable sensitizers of Tb3+ leading to the isolation of intense green-emitting materials. The suppression of the O−H quenchers by deuteration or dehydration processes improves substantially the photoluminescence of the optically-active Eu3+-based materials. Some MOF materials exhibited high heterogeneous catalytic activity and excellent regioselectivity in the ring-opening reaction of styrene oxide (PhEtO) with methanol (100% conversion of PhEtO at 55 ºC for 30 min). The porous MOF material was employed in gas separation processes. This compound showed the ability to separate propane over propylene. The ionexchanged form of this material (containing K+ cations into its network) exhibited higher affinity for CO2 being capable to separate acetylene over this environment non-friendly gas.
Resumo:
Post-synthetic modification (PSM) of metal-organic frameworks encompassing the chemical transformation of the linker present is a promising new route for engineering optical centres and tuning the light emission properties of materials, both in the visible and in the near infrared (NIR) spectral regions. Here, PSM of isoreticular metal-organic framework-3 (IRMOF-3) with ethyl oxalyl monochloride, ethyl acetoacetate, pentane-2,4-dione, 3-(2- hydroxyphenyl)-3-oxopropanal, 2-chloroacetic acid, glyoxylic acid, methyl vinyl ketone and diethyl (ethoxymethylene)malonate followed by chelation of trivalent lanthanide ions afforded intriguing near infrared (Nd3+) and visible (Eu3+, Tb3+) light emitters. IRMOF-3 was used as a case in point due to both its highly porous crystalline structure and the presence of non-coordinating amino groups on the benzenedicarboxylate (bdc) linker amenable to modification. The materials were characterised by elemental analysis, powder X-ray diffraction, optical, scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, and liquid and solid-state nuclear magnetic resonance. The solid-state luminescence properties of Ln-modified-IRMOF-3 were investigated at room temperature. The presence of the bdc aromatic ring, β– diketonate and oxalate enhanced the Ln3+ sensitization via ligand-to-metal energy transfer (anthena effect). As far as photocalysis is concerned, we have synthesized metal−organic frameworks (Cr-MIL-125-AC, Ag-MIL-125-AC) by a green method (solid–vapors reactions). The resulting functionalized materials show a photocatalytic activity for methylene blue degradation up to 6.52 times larger than that of the commercial photocatalyst hombikat UV-100. These findings open the door for further research for improving the photocatalytic performance of metal-organic frameworks.
Resumo:
The strong progress evidenced in photonic and optoelectronic areas, accompanied by an exponential development in the nanoscience and nanotechnology, gave rise to an increasing demand for efficient luminescent materials with more and more exigent characteristics. In this field, wide band gap hosts doped with lanthanide ions represent a class of luminescent materials with a strong technological importance. Within wide band gap material, zirconia owns a combination of physical and chemical properties that potentiate it as an excellent host for the aforementioned ions, envisaging its use in different areas, including in lighting and optical sensors applications, such as pressure sensors and biosensors. Following the demand for outstanding luminescent materials, there is also a request for fast, economic and an easy scale-up process for their production. Regarding these demands, laser floating zone, solution combustion synthesis and pulsed laser ablation in liquid techniques are explored in this thesis for the production of single crystals, nanopowders and nanoparticles of lanthanides doped zirconia based hosts. Simultaneously, a detailed study of the morphological, structural and optical properties of the produced materials is made. The luminescent characteristics of zirconia and yttria stabilized zirconia (YSZ) doped with different lanthanide ions (Ce3+ (4f1), Pr3+ (4f2), Sm3+ (4f5), Eu3+ (4f6), Tb3+ (4f8), Dy3+ (4f9), Er3+ (4f11), Tm3+ (4f12), Yb3+ (4f13)) and co-doped with Er3+,Yb3+ and Tm3+,Yb3+ are analysed. Besides the Stokes luminescence, the anti- Stokes emission upon infrared excitation (upconversion and black body radiation) is also analysed and discussed. The comparison of the luminescence characteristics in materials with different dimensions allowed to analyse the effect of size in the luminescent properties of the dopant lanthanide ions. The potentialities of application of the produced luminescent materials in solid state light, biosensors and pressure sensors are explored taking into account their studied characteristics.