2 resultados para TRANSFORMER AT DEEP SATURATION
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Ionic liquids are a class of solvents that, due to their unique properties, have been proposed in the past few years as alternatives to some hazardous volatile organic compounds. They are already used by industry, where it was possible to improve different processes by the incorporation of this kind of non-volatile and often liquid solvents. However, even if ionic liquids cannot contribute to air pollution, due to their negligible vapour pressures, they can be dispersed thorough aquatic streams thus contaminating the environment. Therefore, the main goals of this work are to study the mutual solubilities between water and different ionic liquids in order to infer on their environmental impact, and to propose effective methods to remove and, whenever possible, recover ionic liquids from aqueous media. The liquid-liquid phase behaviour of different ionic liquids and water was evaluated in the temperature range between (288.15 and 318.15) K. For higher melting temperature ionic liquids a narrower temperature range was studied. The gathered data allowed a deep understanding on the structural effects of the ionic liquid, namely the cation core, isomerism, symmetry, cation alkyl chain length and the anion nature through their mutual solubilities (saturation values) with water. The experimental data were also supported by the COnductor-like Screening MOdel for Real Solvents (COSMO-RS), and for some more specific systems, molecular dynamics simulations were also employed for a better comprehension of these systems at a molecular level. On the other hand, in order to remove and recover ionic liquids from aqueous solutions, two different methods were studied: one based on aqueous biphasic systems, that allowed an almost complete recovery of hydrophilic ionic liquids (those completely miscible with water at temperatures close to room temperature) by the addition of strong salting-out agents (Al2(SO4)3 or AlK(SO4)2); and the other based on the adsorption of several ionic liquids onto commercial activated carbon. The first approach, in addition to allowing the removal of ionic liquids from aqueous solutions, also makes possible to recover the ionic liquid and to recycle the remaining solution. In the adsorption process, only the removal of the ionic liquid from aqueous solutions was attempted. Nevertheless, a broad understanding of the structural effects of the ionic liquid on the adsorption process was attained, and a final improvement on the adsorption of hydrophilic ionic liquids by the addition of an inorganic salt (Na2SO4) was also achieved. Yet, the development of a recovery process that allows the reuse of the ionic liquid is still required for the development of sustainable processes.
Resumo:
Deep-sea resources have been increasingly exploited, and due to that, several ecosystems and species have been considerably affected. Deep-water sharks populations have been of the most disturbed by practices of unselected fisheries, bycatch and discard, mainly due to their low commercial value. Those practices make deep-water sharks very vulnerable to overfishing given their life-history traits, increasing their extinction risk. With the prohibition of the direct fishery, and implementation of quotas and TACs (Total Allowable Catches) regarding the deep-sea shark landings, the official landings have dramatically decreased after the 1990s. However, the IUU (Illegal, unreported and unregulated) catch has exponentially increased. With the analysis of catch per unit effort (CPUE), the depths, and the mean weight of the individuals over the years for each one of the nine most caught species in the Azores, we produced a descriptive analysis of the effect of fisheries in those species. The results show that some of these species have been suffering from a great fishing pressure, and their populations will be greatly affected in the near future if drastic measures are not taken when it comes to managing their long term sustainability.