2 resultados para Suso de Toro
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Nesta tese estamos preocupados com o problema da resistência mínima primeiro dirigida por I. Newton em seu Principia (1687): encontrar o corpo de resistência mínima que se desloca através de um médio. As partículas do médio não interagem entre si, bem como a interação das partículas com o corpo é perfeitamente elástica. Diferentes abordagens desse modelo foram feitas por vários matemáticos nos últimos 20 anos. Aqui damos uma visão geral sobre estes resultados que representa interesse independente, uma vez que os autores diferentes usam notações diferentes. Apresentamos uma solução do problema de minimização na classe de corpos de revolução geralmente não convexos e simplesmente conexos. Acontece que nessa classe existem corpos com resistência menor do que o mínimo da resistência na classe de corpos convexos de revolução. Encontramos o infimum da resistência nesta classe e construimos uma sequência regular de corpos que aproxima este infimum. Também apresentamos um corpo de resistência nula. Até agora ninguém sabia se tais corpos existem ou não, evidentemente o nosso corpo não pertence a nenhuma classe anteriormente analisado. Este corpo é não convexo e não simplesmente conexo; a forma topológica dele é um toro, parece um UFO extraterrestre. Apresentamos aqui várias famílias de tais corpos e estudamos as suas propriedades. Também apresentamos um corpo que é natural de chamar um corpo "invisíveis em uma direção", uma vez que a trajectória de cada partícula com a certa direcção coincide com a linha recta fora do invólucro convexo do corpo. ABSTRACT: In this thesis we are concerned with the problem of minimal resistance first addressed by I. Newton in his Principia (1687): find the body of minimal resistance moving through a medium. The medium particles do not mutually interact, and the interaction of particles with the body is perfectly elastic. Different approaches to that model have been tried by several mathematicians during the last 20 years. Here we give an overview of these results that represents interest in itself since all authors use different notations. We present a solution of the minimization problem in the class of generally non convex, simply connected bodies of revolution. It happens that in this class there are bodies with smaller resistance than the minimum in the class of convex bodies of revolution. We find the infimum of the resistance in this class, and construct a sequence of bodies which approximates this infimum. Also we present a body of zero resistance. Since earlier it was unknown if such bodies exists or not, evidently our body does not belong to any class previously examined. The zero resistance body found by us is non-convex and non-simply connected; topologically it is a torus, and it looks like an extraterrestrial UFO. We present here several families of such bodies and study their properties. We also present a body which is natural to call a body "invisible in one direction", since the trajectory of each particle with the given direction, outside the convex hull of the body, coincides with a straight line.
Resumo:
In this work, the R&D work mainly focused on the mechanical and microstructural analysis of severe plastic deformation (SPD) of Al–Zn alloys and the development of microstructure–based models to explain the observed behaviors is presented. Evolution of the microstructure and mechanical properties of Al–30wt% Zn alloy after the SPD by the high–pressure torsion (HPT) has been investigated in detail regarding the increasing amount of deformation. SPD leads to the gradual grain refinement and decomposition of the Al–based supersaturated solid solution. The initial microstructure of the Al–30wt% Zn alloy contains Al and Zn phases with grains sizes respectively of 15 and 1 micron. The SPD in compression leads to a gradual decrease of the Al and Zn phase grain sizes down to 4 microns and 252 nm, respectively, until a plastic strain of 0.25 is reached. At the same time, the average size of the Zn particles in the bulk of the Al grains increases from 20 to 60 nm and that of the Zn precipitates near or at the grain boundaries increases as well. This microstructure transformation is accompanied at the macroscopic scale by a marked softening of the alloy. The SPD produced by HPT is conducted up to a shear strain of 314. The final Al and Zn grains refine down to the nanoscale with sizes of 370 nm and 170 nm, respectively. As a result of HPT, the Zn–rich (Al) supersaturated solid solution decomposes completely and reaches the equilibrium state corresponding to room temperature and its leads to the material softening. A new microstructure–based model is proposed to describe the softening process occurring during the compression of the supersaturated Al–30wt% Zn alloy. The model successfully describes the above–mentioned phenomena based on a new evolution law expressing the dislocation mean free path as a function of the plastic strain. The softening of the material behavior during HPT process is captured very well by the proposed model that takes into consideration the effects of solid solution hardening and its decomposition, Orowan looping and dislocation density evolution. In particular, it is demonstrated that the softening process that occurs during HPT can be attributed mainly to the decomposition of the supersaturated solid solution and, in a lesser extent, to the evolution of the dislocation mean free path with plastic strain.