3 resultados para Sugarcane industry - Effluents

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A vida da sociedade atual é dependente dos recursos fósseis, tanto a nível de energia como de materiais. No entanto, tem-se verificado uma redução das reservas destes recursos, ao mesmo tempo que as necessidades da sociedade continuam a aumentar, tornando cada vez mais necessárias, a produção de biocombustíveis e produtos químicos. Atualmente o etanol é produzido industrialmente a partir da cana-de-açúcar e milho, matérias-primas usadas na alimentação humana e animal. Este fato desencadeou o aumento de preços dos alimentos em todo o mundo e, como consequência, provocou uma série de distúrbios sociais. Os subprodutos industriais, recursos independentes das cadeias alimentares, têm-se posicionado como fonte de matérias-primas potenciais para bioprocessamento. Neste sentido, surgem os subprodutos gerados em grande quantidade pela indústria papeleira. Os licores de cozimento da madeira ao sulfito ácido (SSLs) são uma matériaprima promissora, uma vez que durante este processo os polissacarídeos da madeira são hidrolisados originando açúcares fermentáveis. A composição dos SSLs varia consoante o tipo de madeira usada no processo de cozimento (de árvores resinosas, folhosas ou a mistura de ambas). O bioprocessamento do SSL proveniente de folhosas (HSSL) é uma metodologia ainda pouco explorada. O HSSL contém elevadas concentrações de açúcares (35-45 g.L-1), na sua maioria pentoses. A fermentação destes açúcares a bioetanol é ainda um desafio, uma vez que nem todos os microrganismos são capazes de fermentar as pentoses a etanol. De entre as leveduras capazes de fermentar naturalmente as pentoses, destaca-se a Scheffersomyces stipitis, que apresenta uma elevada eficiência de fermentação. No entanto, o HSSL contém também compostos conhecidos por inibirem o crescimento de microrganismos, dificultando assim o seu bioprocessamento. Neste sentido, o principal objetivo deste trabalho foi a produção de bioetanol pela levedura S. stipitis a partir de HSSL, resultante do cozimento ao sulfito ácido da madeira de Eucalyptus globulus. Para alcançar este objetivo, estudaram-se duas estratégias de operação diferentes. Em primeiro lugar estudou-se a bio-desintoxicação do HSSL com o fungo filamentoso Paecilomyces variotii, conhecido por crescer em resíduos industriais. Estudaram-se duas tecnologias fermentativas diferentes para a biodesintoxicação do HSSL: um reator descontínuo e um reator descontínuo sequencial (SBR). A remoção biológica de inibidores do HSSL foi mais eficaz quando se usou o SBR. P. variotii assimilou alguns inibidores microbianos como o ácido acético, o ácido gálico e o pirogalol, entre outros. Após esta desintoxicação, o HSSL foi submetido à fermentação com S. stipitis, na qual foi atingida a concentração máxima de etanol de 2.36 g.L-1 com um rendimento de 0.17 g.g-1. P. variotti, além de desintoxicar o HSSL, também é útil na produção de proteína microbiana (SCP) para a alimentação animal pois, a sua biomassa é rica em proteína. O estudo da produção de SCP por P. variotii foi efetuado num SBR com HSSL sem suplementos e suplementado com sais. A melhor produção de biomassa foi obtida no HSSL sem adição de sais, tendo-se obtido um teor de proteína elevado (82,8%), com uma baixa concentração de DNA (1,1%). A proteína continha 6 aminoácidos essenciais, mostrando potencial para o uso desta SCP na alimentação animal e, eventualmente, em nutrição humana. Assim, a indústria papeleira poderá integrar a produção de bioetanol após a produção SCP e melhorar a sustentabilidade da indústria de pastas. A segunda estratégia consistiu em adaptar a levedura S. stipitis ao HSSL de modo a que esta levedura conseguisse crescer e fermentar o HSSL sem remoção de inibidores. Operou-se um reator contínuo (CSTR) com concentrações crescentes de HSSL, entre 20 % e 60 % (v/v) durante 382 gerações em HSSL, com uma taxa de diluição de 0.20 h-1. A população adaptada, recolhida no final do CSTR (POP), apresentou uma melhoria na fermentação do HSSL (60 %), quando comparada com a estirpe original (PAR). Após esta adaptação, a concentração máxima de etanol obtida foi de 6.93 g.L-1, com um rendimento de 0.26 g.g-1. POP possuía também a capacidade de metabolizar, possivelmente por ativação de vias oxidativas, compostos derivados da lenhina e taninos dissolvidos no HSSL, conhecidos inibidores microbianos. Por fim, verificou-se também que a pré-cultura da levedura em 60 % de HSSL fez com que a estirpe PAR melhorasse o processo fermentativo em HSSL, em comparação com o ensaio sem pré-cultura em HSSL. No entanto, no caso da estirpe POP, o seu metabolismo foi redirecionado para a metabolização dos inibidores sendo que a produção de etanol decresceu.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ionic liquids are a class of solvents that, due to their unique properties, have been proposed in the past few years as alternatives to some hazardous volatile organic compounds. They are already used by industry, where it was possible to improve different processes by the incorporation of this kind of non-volatile and often liquid solvents. However, even if ionic liquids cannot contribute to air pollution, due to their negligible vapour pressures, they can be dispersed thorough aquatic streams thus contaminating the environment. Therefore, the main goals of this work are to study the mutual solubilities between water and different ionic liquids in order to infer on their environmental impact, and to propose effective methods to remove and, whenever possible, recover ionic liquids from aqueous media. The liquid-liquid phase behaviour of different ionic liquids and water was evaluated in the temperature range between (288.15 and 318.15) K. For higher melting temperature ionic liquids a narrower temperature range was studied. The gathered data allowed a deep understanding on the structural effects of the ionic liquid, namely the cation core, isomerism, symmetry, cation alkyl chain length and the anion nature through their mutual solubilities (saturation values) with water. The experimental data were also supported by the COnductor-like Screening MOdel for Real Solvents (COSMO-RS), and for some more specific systems, molecular dynamics simulations were also employed for a better comprehension of these systems at a molecular level. On the other hand, in order to remove and recover ionic liquids from aqueous solutions, two different methods were studied: one based on aqueous biphasic systems, that allowed an almost complete recovery of hydrophilic ionic liquids (those completely miscible with water at temperatures close to room temperature) by the addition of strong salting-out agents (Al2(SO4)3 or AlK(SO4)2); and the other based on the adsorption of several ionic liquids onto commercial activated carbon. The first approach, in addition to allowing the removal of ionic liquids from aqueous solutions, also makes possible to recover the ionic liquid and to recycle the remaining solution. In the adsorption process, only the removal of the ionic liquid from aqueous solutions was attempted. Nevertheless, a broad understanding of the structural effects of the ionic liquid on the adsorption process was attained, and a final improvement on the adsorption of hydrophilic ionic liquids by the addition of an inorganic salt (Na2SO4) was also achieved. Yet, the development of a recovery process that allows the reuse of the ionic liquid is still required for the development of sustainable processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industrial activities are the major sources of pollution in all environments. Depending on the type of industry, various levels of organic and inorganic pollutants are being continuously discharged into the environment. Although, several kinds of physical, chemical, biological or the combination of methods have been proposed and applied to minimize the impact of industrial effluents, few have proved to be totally effective in terms of removal rates of several contaminants, toxicity reduction or amelioration of physical and chemical properties. Hence, it is imperative to develop new and innovative methodologies for industrial wastewater treatment. In this context nanotechnology arises announcing the offer of new possibilities for the treatment of wastewaters mainly based on the enhanced physical and chemical proprieties of nanomaterials (NMs), which can remarkably increase their adsorption and oxidation potential. Although applications of NMs may bring benefits, their widespread use will also contribute for their introduction into the environment and concerns have been raised about the intentional use of these materials. Further, the same properties that make NMs so appealing can also be responsible for producing ecotoxicological effects. In a first stage, with the objective of selecting NMs for the treatment of organic and inorganic effluents we first assessed the potential toxicity of nanoparticles of nickel oxide (NiO) with two different sizes (100 and 10-20 nm), titanium dioxide (TiO2, < 25 nm) and iron oxide (Fe2O3, ≈ 85x425 nm). The ecotoxicological assessment was performed with a battery of assays using aquatic organisms from different trophic levels. Since TiO2 and Fe2O3 were the NMs that presented lower risks to the aquatic systems, they were selected for the second stage of this work. Thus, the two NMs pre-selected were tested for the treatment of olive mill wastewater (OMW). They were used as catalyst in photodegradation systems (TiO2/UV, Fe2O3/UV, TiO2/H2O2/UV and Fe2O3/H2O2/UV). The treatments with TiO2 or Fe2O3 combined with H2O2 were the most efficient in ameliorating some chemical properties of the effluent. Regarding the toxicity to V. fischeri the highest reduction was recorded for the H2O2/UV system, without NMs. Afterwards a sequential treatment using photocatalytic oxidation with NMs and degradation with white-rot fungi was applied to OMW. This new approach increased the reduction of chemical oxygen demand, phenolic content and ecotoxicity to V. fischeri. However, no reduction in color and aromatic compounds was achieved after 21 days of biological treatment. The photodegradation systems were also applied to treat the kraft pulp mill and mining effluents. For the organic effluent the combination NMs and H2O2 had the best performances in reduction the chemical parameters as well in terms of toxicity reduction. However, for the mine effluent the best (TiO2/UV and Fe2O3/UV) were only able to significantly remove three metals (Zn, Al and Cd). Nonetheless the treatments were able of reducing the toxicity of the effluent. As a final stage, the toxicity of solid wastes formed during wastewater treatment with NMs was assessed with Chironomus riparius larvae, a representative species of the sediment compartment. Certain solid wastes showed the potential to negatively affect C. riparius survival and growth, depending on the type of effluent treated. This work also brings new insights to the use of NMs for the treatment of industrial wastewaters. Although some potential applications have been announced, many evaluations have to be performed before the upscaling of the chemical treatments with NMs.