2 resultados para Subtypes
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
A demência é uma das principais causas de incapacidade entre os idosos, afetando mais de 36 milhões de pessoas em todo o mundo. É caracterizada pela deterioração progressiva das funções cognitivas, resultando em dificuldades no desempenho das atividades diárias do indivíduo. A idade de aparecimento dos sintomas, bem como a sua taxa de progressão, são variáveis entre a maior parte das demências, sendo estas geralmente caracterizadas por uma natureza progressiva, aumentando de gravidade ao longo do tempo. Entre os tipos mais frequentes de demência encontram-se a Doença de Alzheimer (DA), Demência Vascular, Demência de Corpos de Lewy e Demência Frontotemporal. O diagnóstico diferencial das demências é realizado tipicamente por testes neuro-psicológicos (para a exclusão de outras demências) e por exames imagiológicos. Contudo, muitos dos sintomas clínicos característicos podem sobrepor-se entre os diversos tipos de demência, o que pode constituir um problema devido a falta de especificidade e erros de diagnóstico. A compreensão dos fatores de risco ambientais e genéticos que podem modular o aparecimento e/ou progressão de doenças abre novas perspetivas relativamente à gestão destas neuropatologias. O gene da apolipoproteína E (ApoE) é reconhecido como o maior fator de risco na demência, desempenhando um papel central em particular no desenvolvimento da DA, sendo que os portadores do alelo ε4 são mais suscetíveis para a doença. Além disso, possíveis associações foram também propostas entre este gene e outras doenças neurológicas, sendo no entanto estes dados ainda controversos. Assim, o objetivo principal deste trabalho consistiu em determinar as frequências alélicas e genotípicas do gene ApoE num grupo de estudo piloto de pacientes com demência na região de Aveiro. Este grupo foi subdividido com base no diagnóstico neuroquímico, no qual foram avaliados os níveis de Aβ1-42, Tau-total e fosfo-Tau 181 no líquido cefalorraquidiano dos pacientes. Como resultado, observou-se que o alelo ε3 foi o mais frequente no grupo total, independentemente do tipo de patologia, e que o alelo ε2 foi o menos comum. O alelo ε4 foi de facto mais frequente em pacientes com DA do que em pacientes com outras neuropatologias, o que está de acordo com a relação proposta por outros autores. Adicionalmente, foi possível verificar que a frequência deste alelo nos pacientes com patologia amilóide é semelhante à observada no grupo DA, sugerindo um papel relevante para o ApoE no metabolismo e acumulação cerebral do Aβ. Consequentemente, estes indivíduos podem ter uma maior suscetibilidade para o desenvolvimento de DA no futuro. Deste modo, os nossos dados corroboram a ideia de que o alelo ε4 é um forte fator de risco para a DA e que deve ser considerado como um teste genético relevante que pode contribuir para o diagnóstico clínico da demência.
Resumo:
This thesis reports the application of metabolomics to human tissues and biofluids (blood plasma and urine) to unveil the metabolic signature of primary lung cancer. In Chapter 1, a brief introduction on lung cancer epidemiology and pathogenesis, together with a review of the main metabolic dysregulations known to be associated with cancer, is presented. The metabolomics approach is also described, addressing the analytical and statistical methods employed, as well as the current state of the art on its application to clinical lung cancer studies. Chapter 2 provides the experimental details of this work, in regard to the subjects enrolled, sample collection and analysis, and data processing. In Chapter 3, the metabolic characterization of intact lung tissues (from 56 patients) by proton High Resolution Magic Angle Spinning (HRMAS) Nuclear Magnetic Resonance (NMR) spectroscopy is described. After careful assessment of acquisition conditions and thorough spectral assignment (over 50 metabolites identified), the metabolic profiles of tumour and adjacent control tissues were compared through multivariate analysis. The two tissue classes could be discriminated with 97% accuracy, with 13 metabolites significantly accounting for this discrimination: glucose and acetate (depleted in tumours), together with lactate, alanine, glutamate, GSH, taurine, creatine, phosphocholine, glycerophosphocholine, phosphoethanolamine, uracil nucleotides and peptides (increased in tumours). Some of these variations corroborated typical features of cancer metabolism (e.g., upregulated glycolysis and glutaminolysis), while others suggested less known pathways (e.g., antioxidant protection, protein degradation) to play important roles. Another major and novel finding described in this chapter was the dependence of this metabolic signature on tumour histological subtype. While main alterations in adenocarcinomas (AdC) related to phospholipid and protein metabolisms, squamous cell carcinomas (SqCC) were found to have stronger glycolytic and glutaminolytic profiles, making it possible to build a valid classification model to discriminate these two subtypes. Chapter 4 reports the NMR metabolomic study of blood plasma from over 100 patients and near 100 healthy controls, the multivariate model built having afforded a classification rate of 87%. The two groups were found to differ significantly in the levels of lactate, pyruvate, acetoacetate, LDL+VLDL lipoproteins and glycoproteins (increased in patients), together with glutamine, histidine, valine, methanol, HDL lipoproteins and two unassigned compounds (decreased in patients). Interestingly, these variations were detected from initial disease stages and the magnitude of some of them depended on the histological type, although not allowing AdC vs. SqCC discrimination. Moreover, it is shown in this chapter that age mismatch between control and cancer groups could not be ruled out as a possible confounding factor, and exploratory external validation afforded a classification rate of 85%. The NMR profiling of urine from lung cancer patients and healthy controls is presented in Chapter 5. Compared to plasma, the classification model built with urinary profiles resulted in a superior classification rate (97%). After careful assessment of possible bias from gender, age and smoking habits, a set of 19 metabolites was proposed to be cancer-related (out of which 3 were unknowns and 6 were partially identified as N-acetylated metabolites). As for plasma, these variations were detected regardless of disease stage and showed some dependency on histological subtype, the AdC vs. SqCC model built showing modest predictive power. In addition, preliminary external validation of the urine-based classification model afforded 100% sensitivity and 90% specificity, which are exciting results in terms of potential for future clinical application. Chapter 6 describes the analysis of urine from a subset of patients by a different profiling technique, namely, Ultra-Performance Liquid Chromatography coupled to Mass Spectrometry (UPLC-MS). Although the identification of discriminant metabolites was very limited, multivariate models showed high classification rate and predictive power, thus reinforcing the value of urine in the context of lung cancer diagnosis. Finally, the main conclusions of this thesis are presented in Chapter 7, highlighting the potential of integrated metabolomics of tissues and biofluids to improve current understanding of lung cancer altered metabolism and to reveal new marker profiles with diagnostic value.