1 resultado para Structural modeling
em Repositório Institucional da Universidade de Aveiro - Portugal
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- Aston University Research Archive (7)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (13)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (174)
- Biodiversity Heritage Library, United States (31)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (16)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CentAUR: Central Archive University of Reading - UK (10)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (10)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (14)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (3)
- Dalarna University College Electronic Archive (1)
- Digital Commons - Michigan Tech (9)
- Digital Commons at Florida International University (8)
- Digital Knowledge Repository of Central Drug Research Institute (4)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (9)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (3)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (47)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Martin Luther Universitat Halle Wittenberg, Germany (20)
- Massachusetts Institute of Technology (1)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (78)
- Repositório da Produção Científica e Intelectual da Unicamp (17)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (41)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (73)
- Scielo Saúde Pública - SP (27)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (16)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (10)
- Universidade do Minho (38)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (86)
- Université de Montréal (1)
- Université de Montréal, Canada (2)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (2)
- University of Queensland eSpace - Australia (160)
- University of Washington (3)
Resumo:
A structural time series model is one which is set up in terms of components which have a direct interpretation. In this paper, the discussion focuses on the dynamic modeling procedure based on the state space approach (associated to the Kalman filter), in the context of surface water quality monitoring, in order to analyze and evaluate the temporal evolution of the environmental variables, and thus identify trends or possible changes in water quality (change point detection). The approach is applied to environmental time series: time series of surface water quality variables in a river basin. The statistical modeling procedure is applied to monthly values of physico- chemical variables measured in a network of 8 water monitoring sites over a 15-year period (1999-2014) in the River Ave hydrological basin located in the Northwest region of Portugal.