5 resultados para Strongly Semantic Information

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the actual existence of e-government it is necessary and crucial to provide public information and documentation, making its access simple to citizens. A portion, not necessarily small, of these documents is in an unstructured form and in natural language, and consequently outside of which the current search systems are generally able to cope and effectively handle. Thus, in thesis, it is possible to improve access to these contents using systems that process natural language and create structured information, particularly if supported in semantics. In order to put this thesis to test, this work was developed in three major phases: (1) design of a conceptual model integrating the creation of structured information and making it available to various actors, in line with the vision of e-government 2.0; (2) definition and development of a prototype instantiating the key modules of this conceptual model, including ontology based information extraction supported by examples of relevant information, knowledge management and access based on natural language; (3) assessment of the usability and acceptability of querying information as made possible by the prototype - and in consequence of the conceptual model - by users in a realistic scenario, that included comparison with existing forms of access. In addition to this evaluation, at another level more related to technology assessment and not to the model, evaluations were made on the performance of the subsystem responsible for information extraction. The evaluation results show that the proposed model was perceived as more effective and useful than the alternatives. Associated with the performance of the prototype to extract information from documents, comparable to the state of the art, results demonstrate the feasibility and advantages, with current technology, of using natural language processing and integration of semantic information to improve access to unstructured contents in natural language. The conceptual model and the prototype demonstrator intend to contribute to the future existence of more sophisticated search systems that are also more suitable for e-government. To have transparency in governance, active citizenship, greater agility in the interaction with the public administration, among others, it is necessary that citizens and businesses have quick and easy access to official information, even if it was originally created in natural language.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years the Internet has grown by incorporating billions of small devices, collecting real-world information and distributing it though various systems. As the number of such devices grows, it becomes increasingly difficult to manage all these new information sources. Several context representation schemes have tried to standardize this information, however none of them have been widely adopted. Instead of proposing yet another context representation scheme, we discuss an efficient way to deal with this diversity of representation schemes. We define the basic requirements for context storage systems, analyse context organizations models and propose a new context storage solution. Our solution implements an organizational model that improves scalability, semantic extraction and minimizes semantic ambiguity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The number of connected devices collecting and distributing real-world information through various systems, is expected to soar in the coming years. As the number of such connected devices grows, it becomes increasingly difficult to store and share all these new sources of information. Several context representation schemes try to standardize this information, but none of them have been widely adopted. In previous work we addressed this challenge, however our solution had some drawbacks: poor semantic extraction and scalability. In this paper we discuss ways to efficiently deal with representation schemes' diversity and propose a novel d-dimension organization model. Our evaluation shows that d-dimension model improves scalability and semantic extraction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continuous flow of technological developments in communications and electronic industries has led to the growing expansion of the Internet of Things (IoT). By leveraging the capabilities of smart networked devices and integrating them into existing industrial, leisure and communication applications, the IoT is expected to positively impact both economy and society, reducing the gap between the physical and digital worlds. Therefore, several efforts have been dedicated to the development of networking solutions addressing the diversity of challenges associated with such a vision. In this context, the integration of Information Centric Networking (ICN) concepts into the core of IoT is a research area gaining momentum and involving both research and industry actors. The massive amount of heterogeneous devices, as well as the data they produce, is a significant challenge for a wide-scale adoption of the IoT. In this paper we propose a service discovery mechanism, based on Named Data Networking (NDN), that leverages the use of a semantic matching mechanism for achieving a flexible discovery process. The development of appropriate service discovery mechanisms enriched with semantic capabilities for understanding and processing context information is a key feature for turning raw data into useful knowledge and ensuring the interoperability among different devices and applications. We assessed the performance of our solution through the implementation and deployment of a proof-of-concept prototype. Obtained results illustrate the potential of integrating semantic and ICN mechanisms to enable a flexible service discovery in IoT scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years the technological world has grown by incorporating billions of small sensing devices, collecting and sharing real-world information. As the number of such devices grows, it becomes increasingly difficult to manage all these new information sources. There is no uniform way to share, process and understand context information. In previous publications we discussed efficient ways to organize context information that is independent of structure and representation. However, our previous solution suffers from semantic sensitivity. In this paper we review semantic methods that can be used to minimize this issue, and propose an unsupervised semantic similarity solution that combines distributional profiles with public web services. Our solution was evaluated against Miller-Charles dataset, achieving a correlation of 0.6.