3 resultados para Stochastic models

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nas últimas décadas, um grande número de processos têm sido descritos em termos de redes complexas. A teoria de redes complexas vem sendo utilizada com sucesso para descrever, modelar e caracterizar sistemas naturais, artificias e sociais, tais como ecossistemas, interações entre proteínas, a Internet, WWW, até mesmo as relações interpessoais na sociedade. Nesta tese de doutoramento apresentamos alguns modelos de agentes interagentes em redes complexas. Inicialmente, apresentamos uma breve introdução histórica (Capítulo 1), seguida de algumas noções básicas sobre redes complexas (Capítulo 2) e de alguns trabalhos e modelos mais relevantes a esta tese de doutoramento (Capítulo 3). Apresentamos, no Capítulo 4, o estudo de um modelo de dinâmica de opiniões, onde busca-se o consenso entre os agentes em uma população, seguido do estudo da evolução de agentes interagentes em um processo de ramificação espacialmente definido (Capítulo 5). No Capítulo 6 apresentamos um modelo de otimização de fluxos em rede e um estudo do surgimento de redes livres de escala a partir de um processo de otimização . Finalmente, no Capítulo 7, apresentamos nossas conclusões e perspectivas futuras.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

O transporte marítimo e o principal meio de transporte de mercadorias em todo o mundo. Combustíveis e produtos petrolíferos representam grande parte das mercadorias transportadas por via marítima. Sendo Cabo Verde um arquipelago o transporte por mar desempenha um papel de grande relevância na economia do país. Consideramos o problema da distribuicao de combustíveis em Cabo Verde, onde uma companhia e responsavel por coordenar a distribuicao de produtos petrolíferos com a gestão dos respetivos níveis armazenados em cada porto, de modo a satisfazer a procura dos varios produtos. O objetivo consiste em determinar políticas de distribuicão de combustíveis que minimizam o custo total de distribuiçao (transporte e operacões) enquanto os n íveis de armazenamento sao mantidos nos n íveis desejados. Por conveniencia, de acordo com o planeamento temporal, o prob¬lema e divido em dois sub-problemas interligados. Um de curto prazo e outro de medio prazo. Para o problema de curto prazo sao discutidos modelos matemáticos de programacao inteira mista, que consideram simultaneamente uma medicao temporal cont ínua e uma discreta de modo a modelar multiplas janelas temporais e taxas de consumo que variam diariamente. Os modelos sao fortalecidos com a inclusão de desigualdades validas. O problema e então resolvido usando um "software" comercial. Para o problema de medio prazo sao inicialmente discutidos e comparados varios modelos de programacao inteira mista para um horizonte temporal curto assumindo agora uma taxa de consumo constante, e sao introduzidas novas desigualdades validas. Com base no modelo escolhido sao compara¬das estrategias heurísticas que combinam três heur ísticas bem conhecidas: "Rolling Horizon", "Feasibility Pump" e "Local Branching", de modo a gerar boas soluçoes admissíveis para planeamentos com horizontes temporais de varios meses. Finalmente, de modo a lidar com situaçoes imprevistas, mas impor¬tantes no transporte marítimo, como as mas condicões meteorológicas e congestionamento dos portos, apresentamos um modelo estocastico para um problema de curto prazo, onde os tempos de viagens e os tempos de espera nos portos sao aleatórios. O problema e formulado como um modelo em duas etapas, onde na primeira etapa sao tomadas as decisões relativas as rotas do navio e quantidades a carregar e descarregar e na segunda etapa (designada por sub-problema) sao consideradas as decisoes (com recurso) relativas ao escalonamento das operacões. O problema e resolvido por um metodo de decomposto que usa um algoritmo eficiente para separar as desigualdades violadas no sub-problema.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Communication and cooperation between billions of neurons underlie the power of the brain. How do complex functions of the brain arise from its cellular constituents? How do groups of neurons self-organize into patterns of activity? These are crucial questions in neuroscience. In order to answer them, it is necessary to have solid theoretical understanding of how single neurons communicate at the microscopic level, and how cooperative activity emerges. In this thesis we aim to understand how complex collective phenomena can arise in a simple model of neuronal networks. We use a model with balanced excitation and inhibition and complex network architecture, and we develop analytical and numerical methods for describing its neuronal dynamics. We study how interaction between neurons generates various collective phenomena, such as spontaneous appearance of network oscillations and seizures, and early warnings of these transitions in neuronal networks. Within our model, we show that phase transitions separate various dynamical regimes, and we investigate the corresponding bifurcations and critical phenomena. It permits us to suggest a qualitative explanation of the Berger effect, and to investigate phenomena such as avalanches, band-pass filter, and stochastic resonance. The role of modular structure in the detection of weak signals is also discussed. Moreover, we find nonlinear excitations that can describe paroxysmal spikes observed in electroencephalograms from epileptic brains. It allows us to propose a method to predict epileptic seizures. Memory and learning are key functions of the brain. There are evidences that these processes result from dynamical changes in the structure of the brain. At the microscopic level, synaptic connections are plastic and are modified according to the dynamics of neurons. Thus, we generalize our cortical model to take into account synaptic plasticity and we show that the repertoire of dynamical regimes becomes richer. In particular, we find mixed-mode oscillations and a chaotic regime in neuronal network dynamics.