10 resultados para Spectral graph theory
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
In spectral graph theory a graph with least eigenvalue 2 is exceptional if it is connected, has least eigenvalue greater than or equal to 2, and it is not a generalized line graph. A ðk; tÞ-regular set S of a graph is a vertex subset, inducing a k-regular subgraph such that every vertex not in S has t neighbors in S. We present a recursive construction of all regular exceptional graphs as successive extensions by regular sets.
Resumo:
Let p(G)p(G) and q(G)q(G) be the number of pendant vertices and quasi-pendant vertices of a simple undirected graph G, respectively. Let m_L±(G)(1) be the multiplicity of 1 as eigenvalue of a matrix which can be either the Laplacian or the signless Laplacian of a graph G. A result due to I. Faria states that mL±(G)(1) is bounded below by p(G)−q(G). Let r(G) be the number of internal vertices of G. If r(G)=q(G), following a unified approach we prove that mL±(G)(1)=p(G)−q(G). If r(G)>q(G) then we determine the equality mL±(G)(1)=p(G)−q(G)+mN±(1), where mN±(1) denotes the multiplicity of 1 as eigenvalue of a matrix N±. This matrix is obtained from either the Laplacian or signless Laplacian matrix of the subgraph induced by the internal vertices which are non-quasi-pendant vertices. Furthermore, conditions for 1 to be an eigenvalue of a principal submatrix are deduced and applied to some families of graphs.
Resumo:
The energy of a symmetric matrix is the sum of the absolute values of its eigenvalues. We introduce a lower bound for the energy of a symmetric partitioned matrix into blocks. This bound is related to the spectrum of its quotient matrix. Furthermore, we study necessary conditions for the equality. Applications to the energy of the generalized composition of a family of arbitrary graphs are obtained. A lower bound for the energy of a graph with a bridge is given. Some computational experiments are presented in order to show that, in some cases, the obtained lower bound is incomparable with the well known lower bound $2\sqrt{m}$, where $m$ is the number of edges of the graph.
Resumo:
A family of quadratic programming problems whose optimal values are upper bounds on the independence number of a graph is introduced. Among this family, the quadratic programming problem which gives the best upper bound is identified. Also the proof that the upper bound introduced by Hoffman and Lovász for regular graphs is a particular case of this family is given. In addition, some new results characterizing the class of graphs for which the independence number attains the optimal value of the above best upper bound are given. Finally a polynomial-time algorithm for approximating the size of the maximum independent set of an arbitrary graph is described and the computational experiments carried out on 36 DIMACS clique benchmark instances are reported.
Resumo:
We study the problem of determining whether or not a graph G has an induced matching that dominates every edge of the graph, which is also known as efficient edge domination. This problem is known to be NP-complete in general as well as in some restricted domains, such as bipartite graphs or regular graphs. In this paper, we identify a graph parameter to which the complexity of the problem is sensible and produce results of both negative (intractable) and positive (solvable in polynomial time) type. © 2009 Springer Berlin Heidelberg.
Resumo:
An induced matching of a graph G is a matching having no two edges joined by an edge. An efficient edge dominating set of G is an induced matching M such that every other edge of G is adjacent to some edge in M. We relate maximum induced matchings and efficient edge dominating sets, showing that efficient edge dominating sets are maximum induced matchings, and that maximum induced matchings on regular graphs with efficient edge dominating sets are efficient edge dominating sets. A necessary condition for the existence of efficient edge dominating sets in terms of spectra of graphs is established. We also prove that, for arbitrary fixed p ≥ 3, deciding on the existence of efficient edge dominating sets on p-regular graphs is NP-complete. © 2008 Elsevier B.V. All rights reserved.
Resumo:
The problem of determining a maximum matching or whether there exists a perfect matching, is very common in a large variety of applications and as been extensively studied in graph theory. In this paper we start to introduce a characterisation of a family of graphs for which its stability number is determined by convex quadratic programming. The main results connected with the recognition of this family of graphs are also introduced. It follows a necessary and sufficient condition which characterise a graph with a perfect matching and an algorithmic strategy, based on the determination of the stability number of line graphs, by convex quadratic programming, applied to the determination of a perfect matching. A numerical example for the recognition of graphs with a perfect matching is described. Finally, the above algorithmic strategy is extended to the determination of a maximum matching of an arbitrary graph and some related results are presented.
Resumo:
Neste trabalho estabelece-se uma interpreta c~ao geom etrica, em termos da teoria dos grafos, para v ertices, arestas e faces de uma qualquer dimens~ao do politopo de Birkho ac clico, Tn = n(T), onde T e uma arvore com n v ertices. Generaliza-se o resultado obtido por G. Dahl, [18], para o c alculo do di^ametro do grafo G( t n), onde t n e o politopo das matrizes tridiagonais duplamente estoc asticas. Adicionalmente, para q = 0; 1; 2; 3 s~ao obtidas f ormulas expl citas para a contagem do n umero de q faces do politopo de Birkho tridiagonal, t n, e e feito o estudo da natureza geom etrica dessas mesmas faces. S~ao, tamb em, apresentados algoritmos para efectuar contagens do n umero de faces de dimens~ao inferior a de uma dada face do politopo de Birkho ac clico.
Resumo:
A weighted Bethe graph $B$ is obtained from a weighted generalized Bethe tree by identifying each set of children with the vertices of a graph belonging to a family $F$ of graphs. The operation of identifying the root vertex of each of $r$ weighted Bethe graphs to the vertices of a connected graph $\mathcal{R}$ of order $r$ is introduced as the $\mathcal{R}$-concatenation of a family of $r$ weighted Bethe graphs. It is shown that the Laplacian eigenvalues (when $F$ has arbitrary graphs) as well as the signless Laplacian and adjacency eigenvalues (when the graphs in $F$ are all regular) of the $\mathcal{R}$-concatenation of a family of weighted Bethe graphs can be computed (in a unified way) using the stable and low computational cost methods available for the determination of the eigenvalues of symmetric tridiagonal matrices. Unlike the previous results already obtained on this topic, the more general context of families of distinct weighted Bethe graphs is herein considered.
Resumo:
An upper bound for the sum of the squares of the entries of the principal eigenvector corresponding to a vertex subset inducing a k-regular subgraph is introduced and applied to the determination of an upper bound on the order of such induced subgraphs. Furthermore, for some connected graphs we establish a lower bound for the sum of squares of the entries of the principal eigenvector corresponding to the vertices of an independent set. Moreover, a spectral characterization of families of split graphs, involving its index and the entries of the principal eigenvector corresponding to the vertices of the maximum independent set is given. In particular, the complete split graph case is highlighted.