4 resultados para Solid state reactions

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

O presente trabalho aborda a imobilização de vários complexos do tipo dioxomolibdénio(VI), dioxotungsténio(VI) e de cobre(II) em suportes do tipo hidróxidos duplos lamelares (LDHs). Numa primeira parte descrevem-se os suportes LDHs e a síntese e caracterização em solução e estado sólido de complexos catecolato cis-MoO2 e cis-WO2. Investigou-se depois a química de intercalação deste tipo de complexos, nomeadamente a influência dos LDHs percursores, temperatura de intercalação, excesso de anião e mudança de metal no complexo intercalado (M=Mo, W). De seguida foi estudada a imobilização de oxocomplexos de molibdénio(VI) num LDH com pilares de bipiridina dicarboxilato e procedeu-se à avaliação da sua aplicabilidade em reacções catalíticas de oxidação de álcoois e olefinas. Com o objectivo de desenvolver as aplicações dos LDHs com pilares foi estudada a imobilização de um complexo de cobre(II) neste material e avaliada a sua aplicação como catalizador na oxidação de substratos orgânicos.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this thesis, 2,2’-bipyridine (bipy), di-tert-butyl-2,2’-bipyridine (di-t-Bubipy), 2,2’-bipyridine-5,5’-dicarboxylic acid (H2bpdc), 2-[3(5)-pyrazolyl]pyridine (pzpy) and 2-(1-pentyl-3-pyrazolyl)pyridine (pent-pp) ligands were used as the N,N-chelate ligands in the formation of discrete [MoO2Cl2L]-type complexes. These complexes were employed as precursors for the preparation in aqueous media of oxomolybdenum(VI) products with a wide range of structural diversity. Three distinct heating methods were studied: hydrothermal, reflux or microwave-assisted synthesis. An alternative reaction with the inorganic molybdenum(VI) trioxide (MoO3) and the ligands di-t-Bu-bipy, H2bpdc and pzpy was also investigated under hydrothermal conditions. The distinct nature of the N,N-chelate ligands and/or the heating method employed promoted the isolation of a series of new oxomolybdenum(VI) hybrid materials that clearly reflected the strong structure-directing influence of these ligands. Thus, this thesis describes the synthesis and characterization of the discrete mononuclear [MoO2Cl2(pent-pp)], the dinuclear [Mo2O6(di-t-Bu-bipy)2] and the octanuclear [Mo8O22(OH)4(di-t-Bu-bipy)4] complexes as well as the highly unique polymeric materials {[MoO3(bipy)][MoO3(H2O)]}n, (DMA)[MoO3(Hbpdc)]·nH2O, [Mo3O9(pzpy)]n and [Mo2O6(pent-pp)]n (fine structural details of compound [Mo2O6(pent-pp)]n are presently unknown; however, characterization data strongly pointed toward a polymeric oxide hybrid compound). The catalytic behaviour of the discrete complexes and the polymeric compounds was tested in olefin epoxidation reactions. Compounds [Mo3O9(pzpy)]n and [Mo2O6(pent-pp)]n acted as sources of soluble active species that where identified as the oxodiperoxido complexes [MoO(O2)2(pzpy)] and [MoO(O2)2(pent-pp)], respectively. The majority of the compounds here presented were fully characterized by using solid-state techniques, namely elemental analyses, thermogravimetry, FT-IR, solid-state NMR, electron microscopy and powder X-ray diffraction (both from laboratory and/or synchrotron sources).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The conversion of plant biomass-derived carbohydrates (preferably non-edible) into added-value products is envisaged to be at the core of the future biorefineries. Carbohydrates are the most abundant natural organic polymers on Earth. This work deals with the chemical valorisation of plant biomass, focusing on the acid-catalysed conversion of carbohydrates (mono and polysaccharides) to furanic aldehydes, namely 2-furaldehyde (Fur) and 5-hydroxymethyl-2-furaldehyde (Hmf), which are valuable platform chemicals that have the potential to replace a variety of oil derived chemicals and materials. The investigated reaction systems can be divided into two types depending on the solvent used to dissolve the carbohydrates in the reaction medium: water or ionic liquid-based systems. The reaction temperatures were greater than 150 ºC when the solvent was water, and lower than 150 º C in the cases of the ionic liquid-based catalytic systems. As alternatives to liquid acids (typically used in the industrial production of Fur), solid acid catalysts were investigated in these reaction systems. Aiming at the identification of (soluble and insoluble) reaction products, complementary characterisation techniques were used namely, FT-IR spectroscopy, liquid and solid state NMR spectroscopy, TGA, DSC and GC´GC-ToFMS analyses. Complex mixtures of soluble reaction products were obtained and different types of side reactions may occur. The requirements to be put on the catalysts for these reaction systems partly depend on the type of carbohydrates to be converted and the reaction conditions used. The thermal stability is important due to the fact that formation of humins and catalyst coking phenomena are characteristically inherent to these types of reactions systems leading to the need to regenerate the catalyst which can be effectively accomplished by calcination. Special attention was given to fully inorganic nanoporous solid acids, amorphous or crystalline, and consisting of nano to micro-size particles. The investigated catalysts were silicoaluminophosphates, aluminosilicates and zirconium-tungsten mixed oxides which are versatile catalysts in that their physicochemical properties can be fine-tuned to improve the catalytic performances in the conversion of different substrates (e.g. introduction of mesoporosity and modification of the acid properties). The catalytic systems consisting of aluminosilicates as solid acids and water as solvent seem to be more effective in converting pentoses and related polysaccharides into Fur, than hexoses and related polysaccharides into Hmf. The investigated solid acids exhibited fairly good hydrothermal stabilities. On the other hand, ionic liquid-based catalytic systems can allow reaching simultaneously high Fur and Hmf yields, particularly when Hmf is obtained from D-fructose and related polysaccharides; however, catalyst deactivation occurs and the catalytic reactions take place in homogeneous phase. As pointed out in a review of the state of the art on this topic, the development of truly heterogeneous ionic liquid-based catalytic systems for producing Fur and Hmf in high yields remains a challenge.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Post-synthetic modification (PSM) of metal-organic frameworks encompassing the chemical transformation of the linker present is a promising new route for engineering optical centres and tuning the light emission properties of materials, both in the visible and in the near infrared (NIR) spectral regions. Here, PSM of isoreticular metal-organic framework-3 (IRMOF-3) with ethyl oxalyl monochloride, ethyl acetoacetate, pentane-2,4-dione, 3-(2- hydroxyphenyl)-3-oxopropanal, 2-chloroacetic acid, glyoxylic acid, methyl vinyl ketone and diethyl (ethoxymethylene)malonate followed by chelation of trivalent lanthanide ions afforded intriguing near infrared (Nd3+) and visible (Eu3+, Tb3+) light emitters. IRMOF-3 was used as a case in point due to both its highly porous crystalline structure and the presence of non-coordinating amino groups on the benzenedicarboxylate (bdc) linker amenable to modification. The materials were characterised by elemental analysis, powder X-ray diffraction, optical, scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, and liquid and solid-state nuclear magnetic resonance. The solid-state luminescence properties of Ln-modified-IRMOF-3 were investigated at room temperature. The presence of the bdc aromatic ring, β– diketonate and oxalate enhanced the Ln3+ sensitization via ligand-to-metal energy transfer (anthena effect). As far as photocalysis is concerned, we have synthesized metal−organic frameworks (Cr-MIL-125-AC, Ag-MIL-125-AC) by a green method (solid–vapors reactions). The resulting functionalized materials show a photocatalytic activity for methylene blue degradation up to 6.52 times larger than that of the commercial photocatalyst hombikat UV-100. These findings open the door for further research for improving the photocatalytic performance of metal-organic frameworks.