5 resultados para Soil chemical attributes

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nas últimas décadas, a Terra tem experimentado um aquecimento global e mudanças nos padrões de precipitação. Muitos estudos sobre a avaliação de risco de agrotóxicos em organismos não-alvo foram realizados com base em protocolos padronizados, com condições abióticas controladas. Mas, em campo, os organismos são expostos a flutuações de vários fatores ambientais, bem como a poluentes, que podem alterar os limites de tolerância dos organismos aos stressores naturais, bem como alterar a toxicidade ou biodisponibilidade do químico em causa. Considerando isso, o principal objetivo deste trabalho foi o de avaliar de que modo e em que medida os fatores ambientais (temperatura, humidade do solo e radiação UV) podem interagir uns com os outros ou afetar a toxicidade do carbaril para invertebrados do solo e plantas. Para isso, foram utilizadas quatro espécies padrão: Folsomia candida, Eisenia andrei, Triticum aestivum e Brassica rapa, e simulados diferentes cenários climáticos, com vários parâmetros letais e subletais analisados. A exposição combinada foi analisada utilizando, quando possível, a ferramenta MIXTOX, com base no modelo de referência de acção independente (IA) e possíveis desvios, assim como rácios sinergísticos/antagonísticos (a partir de valores de EC50/LC50), quando a dose-resposta de um dos stressores não foi obtida. Todos os fatores de stress aplicados isoladamente causaram efeitos significativos sobre as espécies testadas e sua exposição combinada com carbaril, apresentaram respostas diferenciadas: para as minhocas, a seca e temperaturas elevadas aumentaram os efeitos deletérios do carbaril (sinergismo), enquanto o alagamento e temperaturas baixas diminuíram sua toxicidade (antagonismo). Para os colêmbolos, o modelo IA mostrou ser uma boa ferramenta para prever a toxicidade do carbaril tanto para temperaturas altas como para as baixas. Para as duas espécies de plantas foram encontradas diferenças significativas entre elas: em termos gerais, as interações entre carbaril e os stressores naturais foram observadas, com sinergismo aparecendo como o padrão principal relacionado com a radiação UV, solos secos e temperaturas elevadas, enquanto o padrão principal relacionado com temperaturas baixas e stress de alagamento foi o antagonismo. Quando os efeitos de dois stressores naturais (radiação UV e humidade do solo) em plantas foram avaliados, uma interação significativa foi encontrada: a seca aliviou o efeito deletério da radiação UV em T. aestivum e o alagamento aumentou os seus efeitos, mas para B. rapa a adição de ambos os stresses de água causou um aumento (sinergismo) dos efeitos deletérios da radiação UV para todos os parâmetros avaliados. Portanto é necessário que as diferenças sazonais e latitudinais, bem como as mudanças climáticas globais, sejam integradas na avaliação de risco de contaminantes do solo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aims to measure the effectiveness of four post-fire emergency techniques for reducing overland flow and soil erosion on the central-Portugal typical forest. The selection and development of these techniques was based on the review of the scientific background, but specially after checking throughout field rainfall simulation experiments which factors were the key for runoff and soil erosion on the specific case of high repellent soils. The forest residue mulch, a new treatment never tested before, was highly effective in reducing runoff and soil erosion in recently burnt eucalypt forest. The logging slash mulch had no obvious effect, but it was attributed to the small amounts of runoff and sediments that the untreated plots produced due to the extensive needle cast following a low severity fire. The hydromulch, a mixture of water, organic fibres, seeds, nutrients and a surfactant used in cutted slopes rehabilitation was also highly successful and was specially indicated for especially sensible areas. The utilization of polyacrylamides, a chemical agent with good performance in agricultural erosion, was not successful in post-fire runoff and soil erosion control, once that did not alter the most important key factor for soil erosion: the ground cover. The development of a new fibre optic turbidity sensor was a successful development on the soil erosion determination methodology, and its patent is being processed in the mean time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation focused on the development, test and validation of methodologies for mercury fractionation and speciation in soil and sediment. After an exhaustive review of the literature, several methods were chosen and tested in well characterised soil and sediment samples. Sequential extraction procedures that divide mercury fractions according to their mobility and potential availability in the environment were investigated. The efficiency of different solvents for fractionation of mercury was evaluated, as well as the adequacy of different analytical instruments for quantification of mercury in the extracts. Kinetic experiments to establish the equilibrium time for mercury release from soil or sediment were also performed. It was found that in the studied areas, only a very small percentage of mercury is present as mobile species and that mobility is associated to higher aluminium and manganese contents, and that high contents of organic matter and sulfur result in mercury tightly bound to the matrix. Sandy soils tend to release mercury faster that clayey soils, and therefore, texture of soil or sediment has a strong influence on the mobility of mercury. It was also understood that analytical techniques for quantification of mercury need to be further developed, with lower quantification limits, particularly for mercury quantification of less concentrated fractions: water-soluble e exchangeable. Although the results provided a better understanding of the distribution of mercury in the sample, the complexity of the procedure limits its applicability and robustness. A proficiency-testing scheme targeting total mercury determination in soil, sediment, fish and human hair was organised in order to evaluate the consistency of results obtained by different laboratories, applying their routine methods to the same test samples. Additionally, single extractions by 1 mol L-1 ammonium acetate solution, 0.1 mol L-1 HCl and 0.1 mol L-1 CaCl2, as well as extraction of the organometallic fraction were proposed for soil; the last was also suggested for sediment and fish. This study was important to update the knowledge on analytical techniques that are being used for mercury quantification, the associated problems and sources of error, and to improve and standardize mercury extraction techniques, as well as to implement effective strategies for quality control in mercury determination. A different, “non chemical-like” method for mercury species identification was developed, optimised and validated, based on the thermo-desorption of the different mercury species. Compared to conventional extraction procedures, this method has advantages: it requires little to no sample treatment; a complete identification of species present is obtained in less than two hours; mercury losses are almost neglectable; can be considered “clean”, as no residues are produced; the worldwide comparison of results obtained is easier and reliable, an important step towards the validation of the method. Therefore, the main deliverables of this PhD thesis are an improved knowledge on analytical procedures for identification and quantification of mercury species in soils and sediments, as well as a better understanding of the factors controlling the behaviour of mercury in these matrices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmental contamination and climate changes constitute two of the most serious problems affecting soil ecosystems in agricultural fields. Agriculture is nowadays a highly optimized process that strongly relies on the application of multiple pesticides to reduce losses and increase yield production. Although constituting, per se, a serious problem to soil biota, pesticide mixtures can assume an even higher relevance in a context of unfavourable environmental conditions. Surprisingly, frameworks currently established for environmental risk assessments keep not considering environmental stressors, such as temperature, soil moisture or UV radiation, as factors liable to influence the susceptibility of organisms to pesticides, or pesticide mixtures, which is raising increasing apprehension regarding their adequacy to actually estimate the risks posed by these compounds to the environment. Albeit the higher attention received on the last few years, the influence of environmental stressors on the behaviour and toxicity of chemical mixtures remains still poorly understood. Aiming to contribute for this discussion, the main goal of the present thesis was to evaluate the single and joint effects of natural stressors and pesticides to the terrestrial isopod Porcellionides pruinosus. The first approach consisted on evaluating the effects of several abiotic factors (temperature, soil moisture and UV radiation) on the performance of P. pruinosus using several endpoints: survival, feeding parameters, locomotor activity and avoidance behaviour. Results showed that these stressors might indeed affect P. pruinosus at relevant environmental conditions, thus suggesting the relevance of their consideration in ecotoxicological assays. At next, a multiple biomarker approach was used to have a closer insight into the pathways of damage of UV radiation and a broad spectrum of processes showed to be involved (i.e. oxidative stress, neurotoxicity, energy). Furthermore, UV effects showed to vary with the environment medium and growth-stage. A similar biomarker approach was employed to assess the single and joint effects of the pesticides chlorpyrifos and mancozeb to P. pruinosus. Energy-related biomarkers showed to be the most differentiating parameters since age-classes seemed to respond differently to contamination stress and to have different metabolic costs associated. Finally, the influence of temperature and soil moisture on the toxicity of pesticide mixtures was evaluated using survival and feeding parameters as endpoints. Pesticide-induced mortality was found to be oppositely affected by temperature, either in single or mixture treatments. Whereas chlorpyrifos acute toxicity was raised under higher temperatures the toxicity of mancozeb was more prominent at lower temperatures. By the opposite, soil moisture showed no effects on the pesticide-induced mortality of isopods. Contrary to survival, both temperature and soil moisture showed to interact with pesticides to influence isopods’ feeding parameters. Nonetheless, was however the most common pattern. In brief, findings reported on this thesis demonstrated why the negligence of natural stressors, or multiple stressors in general, is not a good solution for risk assessment frameworks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid climatic changes are taking place in Arctic, subarctic and cold temperate regions, where predictions point to an increase in freeze-thaw events, changes in precipitation, evaporation and salinity patterns. Climate change may therefore result in large impacts in ecosystem functioning and dynamics, especially in the presence of contaminants due to intense anthropogenic activities. Even though multiple stress approaches have received increasing interest in the last decades, the number of such studies is limited. In particular, knowledge on the effect of freezethaw events and salinity fluctuations on ecotoxicology of soil invertebrates is lacking, especially important when considering supralittoral species. Therefore, the aim of this thesis was to investigate the effects of low temperature and salinity fluctuations, singly and in combination with contaminants, in the freeze-tolerant and euryhaline enchytraeid Enchytraeus albidus. The assessment of population level endpoints (survival and reproduction), along with physiological and biochemical parameters such as levels of cryoprotectants, ice/water content, oxidative stress biomarkers, cellular energy allocation, and tissue concentration of chemicals (when applied), provided new and valuable knowledge on the effects of selected physical and chemical stressors in E. albidus, and allowed the understanding of adjustments in the primary response mechanisms that enable worms to maintain homeostasis and survival in harsh environments such as polar and temperate-cold regions. The presence of moderate levels of salinity significantly increased freeze-tolerance (mainly evaluated as survival, cryoprotection and ice fraction) and reproduction of E. albidus. Moreover, it contributed to the readjustments of cryoprotectant levels, restoration of antioxidant levels and changed singnificantly the effect and uptake of chemicals (copper cadmium, carbendazim and 4-nonylphenol). Temperature fluctuations (simulated as daily freeze-thaw cycles, between -2ºC and -4ºC) caused substancial negative effect on survival of worms previsouly exposed to non-lethal concentrations of 4-nonylphenol, as compared with constant freezing (-4ºC) and control temperature (2ºC). The decrease in cryoprotectants, increase in energy consumption and the highest concentration of 4-nonylphenol in the tissues have highlighted the high energy requirements and level of toxicity experienced by worms exposed to the combined effect of contaminants and freezing-thawing events. The findings reported on this thesis demonstrate that natural (physical) and chemical stressors, singly or in combination, may alter the dynamics of E. albidus, affecting not only their survival and reproduction (and consequent presence/distribution) but also their physiological and biochemical adaptations. These alterations may lead to severe consequences for the functioning of the ecosystems along the Arctic, subarctic and cold temperate regions, where they play an important role for decomposition of dead organic matter. This thesis provides a scientific basis for improving the setting of safety factors for natural soil ecosystems, and to underline the integration of similar investigations in ecotoxicology, and eventually in risk assessment of contaminants.