1 resultado para Shuttle walk

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A graph is singular if the zero eigenvalue is in the spectrum of its 0-1 adjacency matrix A. If an eigenvector belonging to the zero eigenspace of A has no zero entries, then the singular graph is said to be a core graph. A ( k,t)-regular set is a subset of the vertices inducing a k -regular subgraph such that every vertex not in the subset has t neighbours in it. We consider the case when k=t which relates to the eigenvalue zero under certain conditions. We show that if a regular graph has a ( k,k )-regular set, then it is a core graph. By considering the walk matrix we develop an algorithm to extract ( k,k )-regular sets and formulate a necessary and sufficient condition for a graph to be Hamiltonian.