2 resultados para Shatter Cones

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Specific domains can determine protein structural functional relationships. For the Alzheimer’s Amyloid Precursor Protein (APP) several domains have been described, both in its intracellular and extracellular fragments. Many functions have been attributed to APP including an important role in cell adhesion and cell to cell recognition. This places APP at key biological responses, including synaptic transmission. To fulfil these functions, extracellular domains take on added significance. The APP extracellular domain RERMS is in fact a likely candidate to be involved in the aforementioned physiological processes. A multidisciplinary approach was employed to address the role of RERMS. The peptide RERMS was crosslinked to PEG (Polyethylene glycol) and the reaction validated by FTIR (Fourier transform infrared spectrometry). FTIR proved to be the most efficient at validating this reaction because it requires only a drop of sample, and it gives information about the reactions occurred in a mixture. The data obtained consist in an infrared spectra of the sample, where peaks positions give information about the structure of the molecules, and the intensity of peaks is related to the concentration of the molecules. Subsequently substrates of PEG impregnated with RERMS were prepared and SH-SY5Y (human neuroblastoma cell line) cells were plated and differentiated on the latter. Several morphological alterations were clearly evident. The RERMS peptide provoked cells to take on a flatter appearance and the cytoskeletal architecture changed, with the appearance of stress fibres, a clear indicator of actin reorganization. Given that focal adhesions play a key role in determining cellular structure the latter were directly investigated. Focal adhesion kinase (FAK) is one of the most highly expressed proteins in the CNS (central nervous system) during development. It has been described to be crucial for radial migration of neurons. FAK can be localized in growth cones and mediated the response to attractive and repulsive cues during migration. One of the mechanisms by which FAK becomes active is by auto phosphorylation at tyrosine 397. It became clearly evident that in the presence of the RERMS peptide pFAK staining at focal adhesions intensified and more focal adhesions became apparent. Furthermore speckled structures in the nucleus, putatively corresponding to increased expression activity, also increased with RERMS. Taken together these results indicate that the RERMS domain in APP plays a critical role in determining cellular physiological responses. Here is suggested a model by which RERMS domain is recognized by integrins and mediate intracellular responses involving FAK, talin, actin filaments and vinculin. This mechanism probably is responsible for mediating cell adhesion and neurite outgrowth on neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyze the causal structure of the two-dimensional (2D) reduced background used in the perturbative treatment of a head-on collision of two D-dimensional Aichelburg–Sexl gravitational shock waves. After defining all causal boundaries, namely the future light-cone of the collision and the past light-cone of a future observer, we obtain characteristic coordinates using two independent methods. The first is a geometrical construction of the null rays which define the various light cones, using a parametric representation. The second is a transformation of the 2D reduced wave operator for the problem into a hyperbolic form. The characteristic coordinates are then compactified allowing us to represent all causal light rays in a conformal Carter–Penrose diagram. Our construction holds to all orders in perturbation theory. In particular, we can easily identify the singularities of the source functions and of the Green’s functions appearing in the perturbative expansion, at each order, which is crucial for a successful numerical evaluation of any higher order corrections using this method.