10 resultados para Semi-Regular Operators
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Nesta tese, consideram-se operadores integrais singulares com a acção extra de um operador de deslocacamento de Carleman e com coeficientes em diferentes classes de funções essencialmente limitadas. Nomeadamente, funções contínuas por troços, funções quase-periódicas e funções possuíndo factorização generalizada. Nos casos dos operadores integrais singulares com deslocamento dado pelo operador de reflexão ou pelo operador de salto no círculo unitário complexo, obtêm-se critérios para a propriedade de Fredholm. Para os coeficientes contínuos, uma fórmula do índice de Fredholm é apresentada. Estes resultados são consequência das relações de equivalência explícitas entre aqueles operadores e alguns operadores adicionais, tais como o operador integral singular, operadores de Toeplitz e operadores de Toeplitz mais Hankel. Além disso, as relações de equivalência permitem-nos obter um critério de invertibilidade e fórmulas para os inversos laterais dos operadores iniciais com coeficientes factorizáveis. Adicionalmente, aplicamos técnicas de análise numérica, tais como métodos de colocação de polinómios, para o estudo da dimensão do núcleo dos dois tipos de operadores integrais singulares com coeficientes contínuos por troços. Esta abordagem permite também a computação do inverso no sentido Moore-Penrose dos operadores principais. Para operadores integrais singulares com operadores de deslocamento do tipo Carleman preservando a orientação e com funções contínuas como coeficientes, são obtidos limites superiores da dimensão do núcleo. Tal é implementado utilizando algumas estimativas e com a ajuda de relações (explícitas) de equivalência entre operadores. Focamos ainda a nossa atenção na resolução e nas soluções de uma classe de equações integrais singulares com deslocamento que não pode ser reduzida a um problema de valor de fronteira binomial. De forma a atingir os objectivos propostos, foram utilizadas projecções complementares e identidades entre operadores. Desta forma, as equações em estudo são associadas a sistemas de equações integrais singulares. Estes sistemas são depois analisados utilizando um problema de valor de fronteira de Riemann. Este procedimento tem como consequência a construção das soluções das equações iniciais a partir das soluções de problemas de valor de fronteira de Riemann. Motivados por uma grande diversidade de aplicações, estendemos a definição de operador integral de Cauchy para espaços de Lebesgue sobre grupos topológicos. Assim, são investigadas as condições de invertibilidade dos operadores integrais neste contexto.
Resumo:
In this thesis we consider Wiener-Hopf-Hankel operators with Fourier symbols in the class of almost periodic, semi-almost periodic and piecewise almost periodic functions. In the first place, we consider Wiener-Hopf-Hankel operators acting between L2 Lebesgue spaces with possibly different Fourier matrix symbols in the Wiener-Hopf and in the Hankel operators. In the second place, we consider these operators with equal Fourier symbols and acting between weighted Lebesgue spaces Lp(R;w), where 1 < p < 1 and w belongs to a subclass of Muckenhoupt weights. In addition, singular integral operators with Carleman shift and almost periodic coefficients are also object of study. The main purpose of this thesis is to obtain regularity properties characterizations of those classes of operators. By regularity properties we mean those that depend on the kernel and cokernel of the operator. The main techniques used are the equivalence relations between operators and the factorization theory. An invertibility characterization for the Wiener-Hopf-Hankel operators with symbols belonging to the Wiener subclass of almost periodic functions APW is obtained, assuming that a particular matrix function admits a numerical range bounded away from zero and based on the values of a certain mean motion. For Wiener-Hopf-Hankel operators acting between L2-spaces and with possibly different AP symbols, criteria for the semi-Fredholm property and for one-sided and both-sided invertibility are obtained and the inverses for all possible cases are exhibited. For such results, a new type of AP factorization is introduced. Singular integral operators with Carleman shift and scalar almost periodic coefficients are also studied. Considering an auxiliar and simpler operator, and using appropriate factorizations, the dimensions of the kernels and cokernels of those operators are obtained. For Wiener-Hopf-Hankel operators with (possibly different) SAP and PAP matrix symbols and acting between L2-spaces, criteria for the Fredholm property are presented as well as the sum of the Fredholm indices of the Wiener-Hopf plus Hankel and Wiener-Hopf minus Hankel operators. By studying dependencies between different matrix Fourier symbols of Wiener-Hopf plus Hankel operators acting between L2-spaces, results about the kernel and cokernel of those operators are derived. For Wiener-Hopf-Hankel operators acting between weighted Lebesgue spaces, Lp(R;w), a study is made considering equal scalar Fourier symbols in the Wiener-Hopf and in the Hankel operators and belonging to the classes of APp;w, SAPp;w and PAPp;w. It is obtained an invertibility characterization for Wiener-Hopf plus Hankel operators with APp;w symbols. In the cases for which the Fourier symbols of the operators belong to SAPp;w and PAPp;w, it is obtained semi-Fredholm criteria for Wiener-Hopf-Hankel operators as well as formulas for the Fredholm indices of those operators.
Resumo:
Este trabalho, desenvolvido por uma professora de educação especial no contexto onde exerce funções, resultou da vontade de aprofundar o conhecimento sobre as dinâmicas de trabalho entre os professores do Ensino Regular e entre estes e o professor de Educação Especial. Desta forma elaborámos um projeto de investigação com o propósito de aprofundar o conhecimento sobre estas dinâmicas, no âmbito de uma oficina de formação, dinamizada pela investigadora, realizada no contexto de trabalho dos participantes. Neste âmbito, foi proporcionado um conjunto de experiências vivenciadas em conjunto, procurando contribuir para novas perspetivas teóricas sobre o conhecimento, bem como o envolvimento dos participantes em situações empíricas que lhes permitissem aplicar esses conhecimentos na resolução de problemas concretos emergentes no seu contexto de trabalho. A estratégia formativa baseou-se na colaboração como factor de desenvolvimento e de aprendizagem, surgindo como relevante e necessário o envolvimento dos formandos em processos de investigação da própria prática. A formação, na modalidade de Oficina, foi promovida através do Centro de Formação da Instituição onde a escola, um estabelecimento de ensino particular e cooperativo, se integra. Neste âmbito foi acreditada pelo Conselho Científico-Pedagógico da Formação Contínua e envolveu dezasseis professores do 1.º, 2.º e 3.º ciclos do ensino básico. A formação desenvolveuse em duas fases - a primeira fase, constituída por 4 sessões, teve lugar entre maio e julho de 2011, e a segunda fase, igualmente constituída por 4 sessões, teve lugar de setembro a novembro de 2011, num total de 25 horas presenciais e 25 horas não presenciais. Trata-se de um estudo com uma dupla intencionalidade – formativa e investigativa – no qual se procura compreender (i) a relação entre as estratégias de formação e supervisão promovidas pela professora de educação especial e o desenvolvimento de dinâmicas de trabalho colaborativo entre os participantes (ii) e o impacto dessas dinâmicas no desenvolvimento profissional e nas suas práticas, tendo em vista a promoção de uma educação inclusiva. Configura-se como estudo de caso, na variante de multicaso apresentando, ainda, algumas características de investigação-ação. No âmbito deste estudo, utilizámos um conjunto diverso e complementar de procedimentos investigativos, nomeadamente, o inquérito por questionário aplicado a todos os participantes no início e no fim da oficina de formação; o inquérito por questionário de avaliação das sessões, tendo por base os objetivos do estudo; a entrevista semi-estruturada, realizada a quatro docentes do 1º CEB que constituem os subcasos e o portfolio reflexivo individual dos mesmos, os quais se constituem como estratégia de formação e de investigação. Recorreu-se, ainda, como fontes de informação secundária, ao Teaching portfolio do investigador, às videogravações das sessões de formação, aos registos em vídeo de alguns episódios relativos à intervenção dos formandos em sala de aula e aos projetos de investigação-ação, bem como aos dados recolhidos na entrevista dirigida ao Diretor do estabelecimento de educação e ensino, depois de concluído o programa de formação. Os resultados da análise parecem evidenciar a existência de dinâmicas colaborativas e um clima de inter-ajuda que caraterizou a interação ocorrida na formação, em torno de casos concretos, os quais tiveram um impacto significativo sobre o pensamento e a prática dos participantes. Todo o processo desenvolvido parece ter dado lugar à partilha de saberes e à procura conjunta de soluções para os problemas, tendo contribuído para que os professores passassem a ser mais interventivos, evidenciando novas aprendizagens e uma maior consciencialização do conceito de educação para todos e do que esta implica. Os resultados parecem ainda revelar o desenvolvimento de uma parceria estratégica entre os professores do ensino regular e a professora de educação especial, a qual passou a ser aceite como uma pessoa que pode ajudar a encontrar soluções para os problemas que surgem na sala de aula, de forma a garantir a inclusão de todos os alunos e não apenas dos que têm necessidades educativas especiais.
Resumo:
A presente tese resulta de um trabalho de investigação cujo objectivo se centrou no problema de localização-distribuição (PLD) que pretende abordar, de forma integrada, duas actividades logísticas intimamente relacionadas: a localização de equipamentos e a distribuição de produtos. O PLD, nomeadamente a sua modelação matemática, tem sido estudado na literatura, dando origem a diversas aproximações que resultam de diferentes cenários reais. Importa portanto agrupar as diferentes variantes por forma a facilitar e potenciar a sua investigação. Após fazer uma revisão e propor uma taxonomia dos modelos de localização-distribuição, este trabalho foca-se na resolução de alguns modelos considerados como mais representativos. É feita assim a análise de dois dos PLDs mais básicos (os problema capacitados com procura nos nós e nos arcos), sendo apresentadas, para ambos, propostas de resolução. Posteriormente, é abordada a localização-distribuição de serviços semiobnóxios. Este tipo de serviços, ainda que seja necessário e indispensável para o público em geral, dada a sua natureza, exerce um efeito desagradável sobre as comunidades contíguas. Assim, aos critérios tipicamente utilizados na tomada de decisão sobre a localização destes serviços (habitualmente a minimização de custo) é necessário adicionar preocupações que reflectem a manutenção da qualidade de vida das regiões que sofrem o impacto do resultado da referida decisão. A abordagem da localização-distribuição de serviços semiobnóxios requer portanto uma análise multi-objectivo. Esta análise pode ser feita com recurso a dois métodos distintos: não interactivos e interactivos. Ambos são abordados nesta tese, com novas propostas, sendo o método interactivo proposto aplicável a outros problemas de programação inteira mista multi-objectivo. Por último, é desenvolvida uma ferramenta de apoio à decisão para os problemas abordados nesta tese, sendo apresentada a metodologia adoptada e as suas principais funcionalidades. A ferramenta desenvolvida tem grandes preocupações com a interface de utilizador, visto ser direccionada para decisores que tipicamente não têm conhecimentos sobre os modelos matemáticos subjacentes a este tipo de problemas.
Resumo:
A (κ, τ)-regular set is a subset of the vertices of a graph G, inducing a κ-regular subgraph such that every vertex not in the subset has τ neighbors in it. A main eigenvalue of the adjacency matrix A of a graph G has an eigenvector not orthogonal to the all-one vector j. For graphs with a (κ, τ)-regular set a necessary and sufficient condition for an eigenvalue be non-main is deduced and the main eigenvalues are characterized. These results are applied to the construction of infinite families of bidegreed graphs with two main eigenvalues and the same spectral radius (index) and some relations with strongly regular graphs are obtained. Finally, the determination of (κ, τ)-regular sets is analyzed. © 2009 Elsevier Inc. All rights reserved.
Resumo:
An induced matching of a graph G is a matching having no two edges joined by an edge. An efficient edge dominating set of G is an induced matching M such that every other edge of G is adjacent to some edge in M. We relate maximum induced matchings and efficient edge dominating sets, showing that efficient edge dominating sets are maximum induced matchings, and that maximum induced matchings on regular graphs with efficient edge dominating sets are efficient edge dominating sets. A necessary condition for the existence of efficient edge dominating sets in terms of spectra of graphs is established. We also prove that, for arbitrary fixed p ≥ 3, deciding on the existence of efficient edge dominating sets on p-regular graphs is NP-complete. © 2008 Elsevier B.V. All rights reserved.
Resumo:
A family of quadratic programming problems whose optimal values are upper bounds on the independence number of a graph is introduced. Among this family, the quadratic programming problem which gives the best upper bound is identified. Also the proof that the upper bound introduced by Hoffman and Lovász for regular graphs is a particular case of this family is given. In addition, some new results characterizing the class of graphs for which the independence number attains the optimal value of the above best upper bound are given. Finally a polynomial-time algorithm for approximating the size of the maximum independent set of an arbitrary graph is described and the computational experiments carried out on 36 DIMACS clique benchmark instances are reported.
Resumo:
Let G be a finite graph with an eigenvalue μ of multiplicity m. A set X of m vertices in G is called a star set for μ in G if μ is not an eigenvalue of the star complement G\X which is the subgraph of G induced by vertices not in X. A vertex subset of a graph is (k ,t)-regular if it induces a k -regular subgraph and every vertex not in the subset has t neighbors in it. We investigate the graphs having a (k,t)-regular set which induces a star complement for some eigenvalue. A survey of known results is provided and new properties for these graphs are deduced. Several particular graphs where these properties stand out are presented as examples.
Resumo:
In spectral graph theory a graph with least eigenvalue 2 is exceptional if it is connected, has least eigenvalue greater than or equal to 2, and it is not a generalized line graph. A ðk; tÞ-regular set S of a graph is a vertex subset, inducing a k-regular subgraph such that every vertex not in S has t neighbors in S. We present a recursive construction of all regular exceptional graphs as successive extensions by regular sets.
Resumo:
In this paper, relevant results about the determination of (k,t)-regular sets, using the main eigenvalues of a graph, are reviewed and some results about the determination of (0,2)-regular sets are introduced. An algorithm for that purpose is also described. As an illustration, this algorithm is applied to the determination of maximum matchings in arbitrary graphs.