2 resultados para Seasonal semideciduous forest

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to analyse the Brazilian savanna forest from a Legal Reserve (LR) area from a perspective of conservation, reservoir of organic carbon and medicinal biomass for a prospective use of native medicinal plants. An ethnobotanical and ethnopharmacological survey was carried out close to a community settled in the rural area in the south of Tocantins, being selected 9 of the most cited species (cajuí- Anacardium othonianum; inharé-Brosimum gaudichaudii; jatobá-Hymenaeae courbaril; jenipapo-Genipa americana, aroeira-Myracrodruon urundeuva; negramina-Siparuna guianensis; barbatimão- Stryphnodendron obovatum; assa peixe-Vernonia brasiliana, embaúba-Cecropia pachystachya). Crude foliar extracts were subjected to a preliminary phytochemical prospection and triage of secondary metabolites with antimicrobial activity of potential interest in health and familiar agriculture. Phenolic compounds, terpenes and flavonoids were detected in the extracts of most species, which suggests the presence of antimicrobial, antioxidant and anti-insect activities. It was evident the need to better know the LR as a reservoir of medicinal biomass in an area under ecological tension where 35% (610ha) of the property is LR and should be protected by law. Therefore, a forest inventory of live woody species was performed using the allometric or indirect method. This identified a rare remnant of Semidecidual Seasonal Forest amidst the largest world savannah, the Cerrado biome. An analysis of the forest average productivity per basal area (m².ha), aerial live biomass (ton.ha-1) and carbon stock was carried out. The forest fragment was considered relatively rich in species and diversity, although showing signs of disturbance and dominance by a few species. Its horizontal structure suggests biotic regeneration conditions. It is an important reservoir of medicinal plants. Of the families (57.5%) presenting medicinal species, 19 from a total of 33 are represented in the area and contain 44% (27) of the total species (61) and 63% (432) of the total individuals catalogued. Medicinal species have ecological importance for the equilibrium of the local flora and represent 80% of the 10 species with higher Importance Value Index (IVI): Tetragastris altissima, Chrysophyllum marginatum, Oenocarpus distichus, Sclerolobium paniculatum, Simarouba versicolor, Alibertia macrophylla, Siparuna guianensis, Maprounea guianensis, Licania parvifolia e Physocalymma scaberrimum. Medicinal productivity was high for this type of phytophysionomy: 183,2 ton. ha-1 of biomass and 91,51 ton. ha-1 of carbon representing 66% of the total biomass and carbon of this Cerrado forest. From this stage S. guianensis (Siparunaceae) was selected for performing bioassays in order to verify its biological activity against microorganisms of health and agricultural relevance. This is a native aromatic medicinal plant recommended as priority for conservation, with local popular medicinal validation and availability of medicinal feedstock (3300 Kg.ha-1), with the foliar fraction giving 38Kg/ha of crude extract and 5L/ha of essential oil. Foliar crude extracts and essential oil were obtained and tested in vitro using a disk diffusion bioassay. Different concentrations of these natural products were tested against gram-positive bacteria (Staphylococcus aureus ATCC 29213), gram-negative bacteria (Escherichia coli ATCC 25922 and ATCC 35218; Pseudomonas aeruginosa ATCC 10145) and fungi (Candida albicans ATCC 6258 e Fusarium oxysporum). The essential oil inhibited the growth of S. aureus in its crude concentration (380μg.mL-1), as well as diluted to half (190μg.mL-1) and a quarter strength (95μg.mL-1). It’s likely that such action is due to sesquiterpenes major components, such as bisabolol and bisabolene (10.35%), measured by gas chromatography (GC-MS, GC-FID). Extracts did not exhibit any antimicrobial activity against the microorganisms tested. The native medicinal plants prospective market is an alternative that favours the conservation of biodiversity while generating benefits for the development of sustainable family productive activities within local ecosystems instead of the current inappropriate uses. This strengthens conservation policies of Legal Reserve in rural settlements and is in agreement with public policy on global warming and climate changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forest fires implications in overland flow and soil erosion have been researched for several years. Therefore, is widely known that fires enhance hydrological and geomorphological activity worldwide as also in Mediterranean areas. Soil burn severity has been widely used to describe the impacts of fire on soils, and has being recognized as a decisive factor controlling post-fire erosion rates. However, there is no unique definition of the term and the relationship between soil burn severity and post-fire hydrological and erosion response has not yet been fully established. Few studies have assessed post-fire erosion over multiple years, and the authors are aware of none which assess runoff. Small amount of studies concerning pre-fire management practices were also found. In the case of soil erosion models, the Revised Universal Soil Loss Equation (RUSLE) and the revised Morgan–Morgan–Finney (MMF) are well-known models, but not much information is available as regards their suitability in predicting post-fire soil erosion in forest soils. The lack of information is even more pronounced as regards post-fire rehabilitation treatments. The aim of the thesis was to perform an extensive research under the post fire hydrologic and erosive response subject. By understanding the effect of burn severity in ecosystems and its implications regarding post fire hydrological and erosive responses worldwide. Test the effect of different pre-fire land management practices (unplowed, downslope plowed and contour plowed) and time-since-fire, in the post fire hydrological and erosive response, between the two most common land uses in Portugal (pine and eucalypt). Assess the performance of two widely-known erosion models (RUSLE and Revised MMF), to predict soil erosion rates during first year following two wildfires of distinctive burn severity. Furthermore, to apply these two models considering different post-fire rehabilitation treatments in an area severely affected by fire. Improve model estimations of post-fire runoff and erosion rates in two different land uses (pine and eucalypt) using the revised MMF. To assess these improvements by comparing estimations and measurements of runoff and erosion, in two recently burned sites, as also with their post fire rehabilitation treatments. Model modifications involved: (1) focusing on intra-annual changes in parameters to incorporate seasonal differences in runoff and erosion; and (2) inclusion of soil water repellency in runoff predictions. Additionally, validate these improvements with the application of the model to other pine and eucalypt sites in Central Portugal. The review and meta-analysis showed that fire occurrence had a significant effect on the hydrological and erosive response. However, this effect was only significantly higher with increasing soil burn severity for inter-rill erosion, and not for runoff. This study furthermore highlighted the incoherencies between existing burn severity classifications, and proposed an unambiguous classification. In the case of the erosion plots with natural rainfall, land use factor affected annual runoff while land management affected both annual runoff and erosion amounts significantly. Time-since-fire had an important effect in erosion amounts among unplowed sites, while for eucalypt sites time affected both annual runoff and erosion amounts. At all studied sites runoff coefficients increase over the four years of monitoring. In the other hand, sediment concentration in the runoff, recorded a decrease during the same period. Reasons for divergence from the classic post-fire recovery model were also explored. Short fire recurrence intervals and forest management practices are viewed as the main reasons for the observed severe and continuing soil degradation. The revised MMF model presented reasonable accuracy in the predictions while the RUSLE clearly overestimated the observed erosion rates. After improvements: the revised model was able to predict first-year post-fire plot-scale runoff and erosion rates for both forest types, these predictions were improved both by the seasonal changes in the model parameters; and by considering the effect of soil water repellency on the runoff, individual seasonal predictions were considered accurate, and the inclusion of the soil water repellency in the model also improved the model at this base. The revised MMF model proved capable of providing a simple set of criteria for management decisions about runoff and erosion mitigation measures in burned areas. The erosion predictions at the validation sites attested both to the robustness of the model and of the calibration parameters, suggesting a potential wider application.