2 resultados para Sample-sample two dimensional correlation spectroscopy (SS 2D)
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
We analyze the causal structure of the two-dimensional (2D) reduced background used in the perturbative treatment of a head-on collision of two D-dimensional Aichelburg–Sexl gravitational shock waves. After defining all causal boundaries, namely the future light-cone of the collision and the past light-cone of a future observer, we obtain characteristic coordinates using two independent methods. The first is a geometrical construction of the null rays which define the various light cones, using a parametric representation. The second is a transformation of the 2D reduced wave operator for the problem into a hyperbolic form. The characteristic coordinates are then compactified allowing us to represent all causal light rays in a conformal Carter–Penrose diagram. Our construction holds to all orders in perturbation theory. In particular, we can easily identify the singularities of the source functions and of the Green’s functions appearing in the perturbative expansion, at each order, which is crucial for a successful numerical evaluation of any higher order corrections using this method.
Resumo:
In this paper we investigate a novel model of concatenation of a pair of two-dimensional (2D) convolutional codes. We consider finite-support 2D convolutional codes and choose the so-called Fornasini-Marchesini input-state-output (ISO) model to represent these codes. More concretely, we interconnect in series two ISO representations of two 2D convolutional codes and derive the ISO representation of the ob- tained 2D convolutional code. We provide necessary condition for this representation to be minimal. Moreover, structural properties of modal reachability and modal observability of the resulting 2D convolutional codes are investigated.