1 resultado para Salon, 1865
em Repositório Institucional da Universidade de Aveiro - Portugal
Filtro por publicador
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- Adam Mickiewicz University Repository (2)
- Aquatic Commons (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Biblioteca Digital da Câmara dos Deputados (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (15)
- Biodiversity Heritage Library, United States (2)
- Blue Tiger Commons - Lincoln University - USA (13)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (3)
- Boston University Digital Common (14)
- Brock University, Canada (5)
- Cambridge University Engineering Department Publications Database (9)
- CentAUR: Central Archive University of Reading - UK (1)
- Center for Jewish History Digital Collections (37)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (26)
- Dalarna University College Electronic Archive (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Peer Publishing (3)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (29)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (5)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (4)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (269)
- Greenwich Academic Literature Archive - UK (3)
- Harvard University (89)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (1)
- Instituto Politécnico do Porto, Portugal (14)
- Memoria Académica - FaHCE, UNLP - Argentina (19)
- Ministerio de Cultura, Spain (9)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (17)
- Queensland University of Technology - ePrints Archive (12)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad Nacional Agraria (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (5)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (3)
- South Carolina State Documents Depository (10)
- Universidad Autónoma de Nuevo León, Mexico (13)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (4)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (2)
- University of Michigan (280)
- University of Queensland eSpace - Australia (1)
- USA Library of Congress (1)
- WestminsterResearch - UK (1)
Resumo:
Clustering and Disjoint Principal Component Analysis (CDP CA) is a constrained principal component analysis recently proposed for clustering of objects and partitioning of variables, simultaneously, which we have implemented in R language. In this paper, we deal in detail with the alternating least-squares algorithm for CDPCA and highlight its algebraic features for constructing both interpretable principal components and clusters of objects. Two applications are given to illustrate the capabilities of this new methodology.