3 resultados para Safety work in electricity and Training
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
O presente trabalho de investigação apresenta um estudo que procurou observar comportamentos de literacia emergente numa língua estrangeira (Inglês) em contexto da educação pré-escolar. Procedeu-se à conceção e implementação de uma abordagem integrada ao ensino da língua inglesa, através numa abordagem metodológica inspirada no paradigma investigação-ação, percecionada como oportunidade de inovação pedagógica e de formação de professores. O estudo foi desenvolvido em simultâneo no 1ºCEB, tendo como principal objetivo comparar os comportamentos e atitudes dos alunos de outra faixa etária relativamente aos comportamentos de literacia em língua estrangeira. Os dados foram recolhidos através da observação, gravação de aulas, posteriormente transcritas, diários do investigador, questionários, portfolios dos alunos e entrevistas semi-estruturadas a especialistas na área da pedagogia de línguas estrangeiras, analisados através da aplicação de técnicas de análise de conteúdo como procedimento de análise do corpus. Os resultados demonstram a relevância de abordagens integradas de cariz lúdico na promoção de comportamentos de leitura e escrita emergente, estimulando assim motivação intrínseca nas crianças pela aprendizagem da língua e cultura-alvo. Por conseguinte, os comportamentos observados de literacia emergente em língua estrangeira permitem estabelecer uma analogia com as crianças bilingues, na medida em que ao aprenderem uma outra língua desenvolvem em sincronia a sua flexibilidade mental e estratégias de auto-regulação em diversas áreas de conhecimento. Os resultados permitem ainda concluir que estratégias promotoras de motivação intrínseca como o lúdico e o storytelling são vitais na sensibilização à diversidade linguística e cultural, por oposição aos resultados evidenciados pela estratégia nacional para o ensino de línguas estrangeiras no 1.ºCEB. As principais implicações deste estudo sugerem a possibilidade de generalização da língua estrangeira na educação pré-escolar, sendo esta etapa compreendida como um período privilegiado na prevenção de insucesso na leitura e escrita na aprendizagem de uma língua estrangeira. Deste modo, a educação pré-escolar pode ser considerada como um tempo fundador do futuro linguístico das crianças, numa perspetiva de educação linguística ao longo da vida.
Resumo:
The high dependence of Portugal from foreign energy sources (mainly fossil fuels), together with the international commitments assumed by Portugal and the national strategy in terms of energy policy, as well as resources sustainability and climate change issues, inevitably force Portugal to invest in its energetic self-sufficiency. The 20/20/20 Strategy defined by the European Union defines that in 2020 60% of the total electricity consumption must come from renewable energy sources. Wind energy is currently a major source of electricity generation in Portugal, producing about 23% of the national total electricity consumption in 2013. The National Energy Strategy 2020 (ENE2020), which aims to ensure the national compliance of the European Strategy 20/20/20, states that about half of this 60% target will be provided by wind energy. This work aims to implement and optimise a numerical weather prediction model in the simulation and modelling of the wind energy resource in Portugal, both in offshore and onshore areas. The numerical model optimisation consisted in the determination of which initial and boundary conditions and planetary boundary layer physical parameterizations options provide wind power flux (or energy density), wind speed and direction simulations closest to in situ measured wind data. Specifically for offshore areas, it is also intended to evaluate if the numerical model, once optimised, is able to produce power flux, wind speed and direction simulations more consistent with in situ measured data than wind measurements collected by satellites. This work also aims to study and analyse possible impacts that anthropogenic climate changes may have on the future wind energetic resource in Europe. The results show that the ECMWF reanalysis ERA-Interim are those that, among all the forcing databases currently available to drive numerical weather prediction models, allow wind power flux, wind speed and direction simulations more consistent with in situ wind measurements. It was also found that the Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones that showed the best performance in terms of wind power flux, wind speed and direction simulations. This model optimisation allowed a significant reduction of the wind power flux, wind speed and direction simulations errors and, specifically for offshore areas, wind power flux, wind speed and direction simulations more consistent with in situ wind measurements than data obtained from satellites, which is a very valuable and interesting achievement. This work also revealed that future anthropogenic climate changes can negatively impact future European wind energy resource, due to tendencies towards a reduction in future wind speeds especially by the end of the current century and under stronger radiative forcing conditions.
Resumo:
Solid oxide fuel (SOFCs) and electrolyzer (SOECs) cells have been promoted as promising technologies for the stabilization of fuel supply and usage in future green energy systems. SOFCs are devices that produce electricity by the oxidation of hydrogen or hydrocarbon fuels with high efficiency. Conversely, SOECs can offer the reverse reaction, where synthetic fuels can be generated by the input of renewable electricity. Due to this similar but inverse nature of SOFCs and SOECs, these devices have traditionally been constructed from comparable materials. Nonetheless, several limitations have hindered the entry of SOFCs and SOECs into the marketplace. One of the most debilitating is associated with chemical interreactions between cell components that can lead to poor longevities at high working temperatures and/or depleted electrochemcial performance. Normally such interreactions are countered by the introduction of thin, purely ionic conducting, buffer layers between the electrode and electrolyte interface. The objective of this thesis is to assess if possible improvements in electrode kinetics can also be obtained by modifying the transport properties of these buffer layers by the introduction of multivalent cations. The introduction of minor electronic conductivity in the surface of the electrolyte material has previously been shown to radically enhance the electrochemically active area for oxygen exchange, reducing polarization resistance losses. Hence, the current thesis aims to extend this knowledge to tailor a bi-functional buffer layer that can prevent chemical interreaction while also enhancing electrode kinetics.The thesis selects a typical scenario of an yttria stabilized zirconia electrolyte combined with a lanthanide containing oxygen electrode. Gadolinium, terbium and praseodymium doped cerium oxide materials have been investigated as potential buffer layers. The mixed ionic electronic conducting (MIEC) properties of the doped-cerium materials have been analyzed and collated. A detailed analysis is further presented of the impact of the buffer layers on the kinetics of the oxygen electrode in SOFC and SOEC devices. Special focus is made to assess for potential links between the transport properties of the buffer layer and subsequent electrode performance. The work also evaluates the electrochemical performance of different K2NiF4 structure cathodes deposited onto a peak performing Pr doped-cerium buffer layer, the influence of buffer layer thickness and the Pr content of the ceria buffer layer. It is shown that dramatic increases in electrode performance can be obtained by the introduction of MIEC buffer layers, where the best performances are shown to be offered by buffer layers of highest ambipolar conductivity. These buffer layers are also shown to continue to offer the bifunctional role to protect from unwanted chemical interactions at the electrode/electrolyte interface.