4 resultados para Reverse self-control problem

em Repositório Institucional da Universidade de Aveiro - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os sistemas compartimentais são frequentemente usados na modelação de diversos processos em várias áreas, tais como a biomedicina, ecologia, farmacocinética, entre outras. Na maioria das aplicações práticas, nomeadamente, aquelas que dizem respeito à administração de drogas a pacientes sujeitos a cirurgia, por exemplo, a presença de incertezas nos parâmetros do sistema ou no estado do sistema é muito comum. Ao longo dos últimos anos, a análise de sistemas compartimentais tem sido bastante desenvolvida na literatura. No entanto, a análise da sensibilidade da estabilidade destes sistemas na presença de incertezas tem recebido muito menos atenção. Nesta tese, consideramos uma lei de controlo por realimentação do estado com restrições de positividade e analisamos a sua robustez quando aplicada a sistemas compartimentais lineares e invariantes no tempo com incertezas nos parâmetros. Além disso, para sistemas lineares e invariantes no tempo com estado inicial desconhecido, combinamos esta lei de controlo com um observador do estado e a robustez da lei de controlo resultante também é analisada. O controlo do bloqueio neuromuscular por meio da infusão contínua de um relaxante muscular pode ser modelado como um sistema compartimental de três compartimentos e tem sido objecto de estudo por diversos grupos de investigação. Nesta tese, os nossos resultados são aplicados a este problema de controlo e são fornecidas estratégias para melhorar os resultados obtidos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consideramos o problema de controlo óptimo de tempo mínimo para sistemas de controlo mono-entrada e controlo afim num espaço de dimensão finita com condições inicial e final fixas, onde o controlo escalar toma valores num intervalo fechado. Quando aplicamos o método de tiro a este problema, vários obstáculos podem surgir uma vez que a função de tiro não é diferenciável quando o controlo é bang-bang. No caso bang-bang os tempos conjugados são teoricamente bem definidos para este tipo de sistemas de controlo, contudo os algoritmos computacionais directos disponíveis são de difícil aplicação. Por outro lado, no caso suave o conceito teórico e prático de tempos conjugados é bem conhecido, e ferramentas computacionais eficazes estão disponíveis. Propomos um procedimento de regularização para o qual as soluções do problema de tempo mínimo correspondente dependem de um parâmetro real positivo suficientemente pequeno e são definidas por funções suaves em relação à variável tempo, facilitando a aplicação do método de tiro simples. Provamos, sob hipóteses convenientes, a convergência forte das soluções do problema regularizado para a solução do problema inicial, quando o parâmetro real tende para zero. A determinação de tempos conjugados das trajectórias localmente óptimas do problema regularizado enquadra-se na teoria suave conhecida. Provamos, sob hipóteses adequadas, a convergência do primeiro tempo conjugado do problema regularizado para o primeiro tempo conjugado do problema inicial bang-bang, quando o parâmetro real tende para zero. Consequentemente, obtemos um algoritmo eficiente para a computação de tempos conjugados no caso bang-bang.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a second-order variational problem depending on the covariant acceleration, which is related to the notion of Riemannian cubic polynomials. This problem and the corresponding optimal control problem are described in the context of higher order tangent bundles using geometric tools. The main tool, a presymplectic variant of Pontryagin’s maximum principle, allows us to study the dynamics of the control problem.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main goal of this paper is to extend the generalized variational problem of Herglotz type to the more general context of the Euclidean sphere S^n. Motivated by classical results on Euclidean spaces, we derive the generalized Euler-Lagrange equation for the corresponding variational problem defined on the Riemannian manifold S^n. Moreover, the problem is formulated from an optimal control point of view and it is proved that the Euler-Lagrange equation can be obtained from the Hamiltonian equations. It is also highlighted the geodesic problem on spheres as a particular case of the generalized Herglotz problem.