4 resultados para Retrofitting
em Repositório Institucional da Universidade de Aveiro - Portugal
Resumo:
Seismic risk evaluation of built-up areas involves analysis of the level of earthquake hazard of the region, building vulnerability and exposure. Within this approach that defines seismic risk, building vulnerability assessment assumes great importance, not only because of the obvious physical consequences in the eventual occurrence of a seismic event, but also because it is the one of the few potential aspects in which engineering research can intervene. In fact, rigorous vulnerability assessment of existing buildings and the implementation of appropriate retrofitting solutions can help to reduce the levels of physical damage, loss of life and the economic impact of future seismic events. Vulnerability studies of urban centresshould be developed with the aim of identifying building fragilities and reducing seismic risk. As part of the rehabilitation of the historic city centre of Coimbra, a complete identification and inspection survey of old masonry buildings has been carried out. The main purpose of this research is to discuss vulnerability assessment methodologies, particularly those of the first level, through the proposal and development of a method previously used to determine the level of vulnerability, in the assessment of physical damage and its relationship with seismic intensity.
Resumo:
The exponential growth of the world population has led to an increase of settlements often located in areas prone to natural disasters, including earthquakes. Consequently, despite the important advances in the field of natural catastrophes modelling and risk mitigation actions, the overall human losses have continued to increase and unprecedented economic losses have been registered. In the research work presented herein, various areas of earthquake engineering and seismology are thoroughly investigated, and a case study application for mainland Portugal is performed. Seismic risk assessment is a critical link in the reduction of casualties and damages due to earthquakes. Recognition of this relation has led to a rapid rise in demand for accurate, reliable and flexible numerical tools and software. In the present work, an open-source platform for seismic hazard and risk assessment is developed. This software is capable of computing the distribution of losses or damage for an earthquake scenario (deterministic event-based) or earthquake losses due to all the possible seismic events that might occur within a region for a given interval of time (probabilistic event-based). This effort has been developed following an open and transparent philosophy and therefore, it is available to any individual or institution. The estimation of the seismic risk depends mainly on three components: seismic hazard, exposure and vulnerability. The latter component assumes special importance, as by intervening with appropriate retrofitting solutions, it may be possible to decrease directly the seismic risk. The employment of analytical methodologies is fundamental in the assessment of structural vulnerability, particularly in regions where post-earthquake building damage might not be available. Several common methodologies are investigated, and conclusions are yielded regarding the method that can provide an optimal balance between accuracy and computational effort. In addition, a simplified approach based on the displacement-based earthquake loss assessment (DBELA) is proposed, which allows for the rapid estimation of fragility curves, considering a wide spectrum of uncertainties. A novel vulnerability model for the reinforced concrete building stock in Portugal is proposed in this work, using statistical information collected from hundreds of real buildings. An analytical approach based on nonlinear time history analysis is adopted and the impact of a set of key parameters investigated, including the damage state criteria and the chosen intensity measure type. A comprehensive review of previous studies that contributed to the understanding of the seismic hazard and risk for Portugal is presented. An existing seismic source model was employed with recently proposed attenuation models to calculate probabilistic seismic hazard throughout the territory. The latter results are combined with information from the 2011 Building Census and the aforementioned vulnerability model to estimate economic loss maps for a return period of 475 years. These losses are disaggregated across the different building typologies and conclusions are yielded regarding the type of construction more vulnerable to seismic activity.
Resumo:
Slender masonry structures are distributed all over the world and constitute a relevant part of the architectural and cultural heritage of humanity. Their protection against earthquakes is a topic of great concern among the scientific community. This concern mainly arises from the strong damage or complete loss suffered by this group of structures due to catastrophic events and the need and interest to preserve them. Although the great progress in technology, and in the knowledge of seismology and earthquake engineering, the preservation of these brittle and massive structures still represents a major challenge. Based on the research developed in this work it is proposed a methodology for the seismic risk assessment of slender masonry structures. The proposed methodology was applied for the vulnerability assessment of Nepalese Pagoda temples which follow very simple construction procedure and construction detailing in relation to seismic resistance requirements. The work is divided in three main parts. Firstly, particular structural fragilities and building characteristics of the important UNESCO classified Nepalese Pagoda temples which affect their seismic performance and dynamic properties are discussed. In the second part the simplified method proposed for seismic vulnerability assessment of slender masonry structures is presented. Finally, the methodology proposed in this work is applied to study Nepalese Pagoda temples, as well as in the efficiency assessment of seismic performance improvement solution compatible with original cultural and technological value.
Resumo:
A construção em alvenaria de adobe tem um vasto património a nível mundial. É possível encontrar construção em terra no nosso território, sendo que a técnica particular do adobe foi amplamente utilizada na região de Aveiro durante o século XIX até meados do século XX. Devido à tradição e valor patrimonial da construção em alvenaria de adobe, diversos trabalhos têm vindo a ser desenvolvidos no departamento de Engenharia Civil da Universidade de Aveiro, perspetivando um aprofundar de conhecimentos acerca deste tipo de construção. A vulnerabilidade sísmica das construções em alvenaria de adobe fez com que surgissem vários estudos para caracterização sísmica das mesmas, sendo que, recentemente, foi levada a cabo a realização de um ensaio cíclico, simulando os efeitos de um sismo, num modelo de adobe à escala real, construído no laboratório do departamento de Engenharia Civil da Universidade de Aveiro. A presente dissertação tem como objetivo estudar formas de reparação e reforço sísmico de estruturas em adobe. Para isso foi reparado e reforçado o modelo previamente ensaiado, e novamente submetido a um ensaio cíclico, de modo a fazer-se uma análise comparativa com o ensaio prévio e assim retirar conclusões sobre a eficácia da solução de reforço aplicada.